skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local interactions and homophily effects in actor collaboration networks for urban resilience governance
Abstract Understanding actor collaboration networks and their evolution is essential to promoting collective action in resilience planning and management of interdependent infrastructure systems. Local interactions and choice homophily are two important network evolution mechanisms. Network motifs encode the information of network formation, configuration, and the local structure. Homophily effects, on the other hand, capture whether the network configurations have significant correlations with node properties. The objective of this paper is to explore the extent to which local interactions and homophily effects influence actor collaboration in resilience planning and management of interdependent infrastructure systems. We mapped bipartite actor collaboration network based on a post-Hurricane Harvey stakeholder survey that revealed actor collaborations for hazard mitigation. We examined seven bipartite network motifs for the mapped collaboration network and compared the mapped network to simulated random models with same degree distributions. Then we examined whether the network configurations had significant statistics for node properties using exponential random graph models. The results provide insights about the two mechanisms—local interactions and homophily effect—influencing the formation of actor collaboration in resilience planning and management of interdependent urban systems. The findings have implications for improving network cohesion and actor collaborations from diverse urban sectors.  more » « less
Award ID(s):
1832662
PAR ID:
10311647
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Network Science
Volume:
6
Issue:
1
ISSN:
2364-8228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposed and tested a multilayer framework for modeling network dynamics of inter-organizational coordination in resilience planning among interdependent infrastructure sectors. Each layer in the network represents one infrastructure sector such as flood control, transportation, and emergency response. Coordination probability was introduced to approximate the inconsistent coordination between organizations, based on which the intra-layer or inter-layer link removal was conducted and inter-organizational coordination efficiency within and across infrastructure sectors was hereby unveiled. To test the proposed framework, a multilayer collaboration network of 35 organizations from five infrastructure sectors in Harris County, Texas, was mapped based on a survey of Hurricane Harvey. The analysis results showed that before Hurricane Harvey, coordination among flood control, transportation, and infrastructure development sectors lacked essential integration to foster robust resilience plans. The proposed framework enables an assessment of coordination efficiency among organizations involving in resilience planning and provides an indicator for urban resilience measurement. 
    more » « less
  2. Abstract It is essential to study the robustness and centrality of interdependent networks for building reliable interdependent systems. Here, we consider a nonlinear load-capacity cascading failure model on interdependent networks, where the initial load distribution is not random, as usually assumed, but determined by the influence of each node in the interdependent network. The node influence is measured by an automated entropy-weighted multi-attribute algorithm that takes into account both different centrality measures of nodes and the interdependence of node pairs, then averaging for not only the node itself but also its nearest neighbors and next-nearest neighbors. The resilience of interdependent networks under such a more practical and accurate setting is thoroughly investigated for various network parameters, as well as how nodes from different layers are coupled and the corresponding coupling strength. The results thereby can help better monitoring interdependent systems. 
    more » « less
  3. Urban digital twins (UDTs) have been identified as a potential technology to achieve digital transformative positive urban change through landscape architecture and urban planning. However, how this new technology will influence community resilience and adaptation planning is currently unclear. This article: (1) offers a scoping review of existing studies constructing UDTs, (2) identifies challenges and opportunities of UDT technologies for community adaptation planning, and (3) develops a conceptual framework of UDTs for community infrastructure resilience. This article highlights the need for integrating multi-agent interactions, artificial intelligence, and coupled natural–physical–social systems into a human-centered UDTs framework to improve community infrastructure resilience. 
    more » « less
  4. Abstract Protein–protein interaction (PPI) networks represent complex intra-cellular protein interactions, and the presence or absence of such interactions can lead to biological changes in an organism. Recent network-based approaches have shown that a phenotype’s PPI network’s resilience to environmental perturbations is related to its placement in the tree of life; though we still do not know how or why certain intra-cellular factors can bring about this resilience. Here, we explore the influence of gene expression and network properties on PPI networks’ resilience. We use publicly available data of PPIs for E. coli , S. cerevisiae , and H. sapiens , where we compute changes in network resilience as new nodes (proteins) are added to the networks under three node addition mechanisms—random, degree-based, and gene-expression-based attachments. By calculating the resilience of the resulting networks, we estimate the effectiveness of these node addition mechanisms. We demonstrate that adding nodes with gene-expression-based preferential attachment (as opposed to random or degree-based) preserves and can increase the original resilience of PPI network in all three species, regardless of gene expression distribution or network structure. These findings introduce a general notion of prospective resilience , which highlights the key role of network structures in understanding the evolvability of phenotypic traits. 
    more » « less
  5. Network motifs are often called the building blocks of networks. Analysis of motifs has been found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. This phenomenon of the impact of local structure has been recently documented in network fragility analysis and classification. At the same time, many studies of networks still tend to focus on global topological measures, often failing to unveil hidden mechanisms behind vulnerability of real networks and their dynamic response to malfunctions. In this paper, a study of motif-based analysis of network resilience and reliability under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of networks. These methods are demonstrated on electricity transmission networks of 4 European countries, and the results are compared with commonly used resilience and reliability measures. 
    more » « less