skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What network motifs tell us about resilience and reliability of complex networks
Network motifs are often called the building blocks of networks. Analysis of motifs has been found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. This phenomenon of the impact of local structure has been recently documented in network fragility analysis and classification. At the same time, many studies of networks still tend to focus on global topological measures, often failing to unveil hidden mechanisms behind vulnerability of real networks and their dynamic response to malfunctions. In this paper, a study of motif-based analysis of network resilience and reliability under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of networks. These methods are demonstrated on electricity transmission networks of 4 European countries, and the results are compared with commonly used resilience and reliability measures.  more » « less
Award ID(s):
1736417 1824716 1824710 1633331 1736368
PAR ID:
10121659
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
39
ISSN:
0027-8424
Page Range / eLocation ID:
19368 to 19373
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Network motifs are often called the building blocks of networks. Analysis of motifs is found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. In the context of power grids, this phenomenon of the impact of local structure has been recently documented in fragility analysis and power system classification. At the same time, most studies of power system networks still tend to focus on global topo-logical measures of power grids, often failing to unveil hidden mechanisms behind vulnerability of real power systems and their dynamic response to malfunctions. In this paper a pilot study of motif-based analysis of power grid robustness under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of power systems. 
    more » « less
  2. Abstract In studying resilience in temporal human networks, relying solely on global network measures would be inadequate; latent sub-structural network mechanisms need to be examined to determine the extent of impact and recovery of these networks during perturbations, such as urban flooding. In this study, we utilize high-resolution aggregated location-based data to construct temporal human mobility networks in Houston in the context of the 2017 Hurricane Harvey. We examine motif distribution, motif persistence, temporal stability, and motif attributes to reveal latent sub-structural mechanisms related to the resilience of human mobility networks during disaster-induced perturbations. The results show that urban flood impacts persist in human mobility networks at the sub-structure level for several weeks. The impact extent and recovery duration are heterogeneous across different network types. Also, while perturbation impacts persist at the sub-structure level, global topological network properties indicate that the network has recovered. The findings highlight the importance of examining the microstructures and their dynamic processes and attributes in understanding the resilience of temporal human mobility networks (and other temporal networks). The findings can also provide disaster managers, public officials, and transportation planners with insights to better evaluate impacts and monitor recovery in affected communities. 
    more » « less
  3. Abstract Determining the key elements of interconnected infrastructure and complex systems is paramount to ensure system functionality and integrity. This work quantifies the dominance of the networks’ nodes in their respective neighborhoods, introducing a centrality metric, DomiRank, that integrates local and global topological information via a tunable parameter. We present an analytical formula and an efficient parallelizable algorithm for DomiRank centrality, making it applicable to massive networks. From the networks’ structure and function perspective, nodes with high values of DomiRank highlight fragile neighborhoods whose integrity and functionality are highly dependent on those dominant nodes. Underscoring this relation between dominance and fragility, we show that DomiRank systematically outperforms other centrality metrics in generating targeted attacks that effectively compromise network structure and disrupt its functionality for synthetic and real-world topologies. Moreover, we show that DomiRank-based attacks inflict more enduring damage in the network, hindering its ability to rebound and, thus, impairing system resilience. DomiRank centrality capitalizes on the competition mechanism embedded in its definition to expose the fragility of networks, paving the way to design strategies to mitigate vulnerability and enhance the resilience of critical infrastructures. 
    more » « less
  4. Abstract Motivation One of the core problems in the analysis of biological networks is the link prediction problem. In particular, existing interactions networks are noisy and incomplete snapshots of the true network, with many true links missing because those interactions have not yet been experimentally observed. Methods to predict missing links have been more extensively studied for social than for biological networks; it was recently argued that there is some special structure in protein–protein interaction (PPI) network data that might mean that alternate methods may outperform the best methods for social networks. Based on a generalization of the diffusion state distance, we design a new embedding-based link prediction method called global and local integrated diffusion embedding (GLIDE). GLIDE is designed to effectively capture global network structure, combined with alternative network type-specific customized measures that capture local network structure. We test GLIDE on a collection of three recently curated human biological networks derived from the 2016 DREAM disease module identification challenge as well as a classical version of the yeast PPI network in rigorous cross validation experiments. Results We indeed find that different local network structure is dominant in different types of biological networks. We find that the simple local network measures are dominant in the highly connected network core between hub genes, but that GLIDE’s global embedding measure adds value in the rest of the network. For example, we make GLIDE-based link predictions from genes known to be involved in Crohn’s disease, to genes that are not known to have an association, and make some new predictions, finding support in other network data and the literature. Availability and implementation GLIDE can be downloaded at https://bitbucket.org/kap_devkota/glide. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract Understanding actor collaboration networks and their evolution is essential to promoting collective action in resilience planning and management of interdependent infrastructure systems. Local interactions and choice homophily are two important network evolution mechanisms. Network motifs encode the information of network formation, configuration, and the local structure. Homophily effects, on the other hand, capture whether the network configurations have significant correlations with node properties. The objective of this paper is to explore the extent to which local interactions and homophily effects influence actor collaboration in resilience planning and management of interdependent infrastructure systems. We mapped bipartite actor collaboration network based on a post-Hurricane Harvey stakeholder survey that revealed actor collaborations for hazard mitigation. We examined seven bipartite network motifs for the mapped collaboration network and compared the mapped network to simulated random models with same degree distributions. Then we examined whether the network configurations had significant statistics for node properties using exponential random graph models. The results provide insights about the two mechanisms—local interactions and homophily effect—influencing the formation of actor collaboration in resilience planning and management of interdependent urban systems. The findings have implications for improving network cohesion and actor collaborations from diverse urban sectors. 
    more » « less