We present the first GPU-based parallel algorithm to efficiently update vertex coloring on large dynamic networks. For single GPU, we introduce the concept of loosely maintained vertex color update that reduces computation and memory requirements. For multiple GPUs, in distributed environments, we propose priority-based ordering of vertices to reduce the communication time. We prove the correctness of our algorithms and experimentally demonstrate that for graphs of over 16 million vertices and over 134 million edges on a single GPU, our dynamic algorithm is as much as 20x faster than state-of-the-art algorithm on static graphs. For larger graphs with over 130 million vertices and over 260 million edges, our distributed implementation with 8 GPUs produces updated color assignments within 160 milliseconds. In all cases, the proposed parallel algorithms produce comparable or fewer colors than state-of-the-art algorithms.
more »
« less
Anti-Section Transitive Closure
The transitive closure of a graph is a new graph where every vertex is directly connected to all vertices to which it had a path in the original graph. Transitive closures are useful for reachability and relationship querying. Finding the transitive closure can be computationally expensive and requires a large memory footprint as the output is typically larger than the input. Some of the original research on transitive closures assumed that graphs were dense and used dense adjacency matrices. We have since learned that many real-world networks are extremely sparse, and the existing methods do not scale. In this work, we introduce a new algorithm called Anti-section Transitive Closure (ATC) for finding the transitive closure of a graph. We present a new parallel edges operation – anti-sections – for finding new edges to reachable vertices. ATC scales to massively multithreaded systems such as NVIDIA’s GPU with tens of thousands of threads. We show that the anti-section operation shares some traits with the triangle counting intersection operation in graph analysis. Lastly, we view the transitive closure problem as a dynamic graph problem requiring edge insertions. By doing this, our memory footprint is smaller. We also show a method for creating the batches in parallel using two different techniques: dual-round and hash. Using these techniques and the Hornet dynamic graph data structure, we show our new algorithm on an NVIDIA Titan V GPU. We compare with other packages such as NetworkX, SEI-GBTL, SuiteSparse, and cuSparse.
more »
« less
- Award ID(s):
- 2109988
- PAR ID:
- 10311655
- Date Published:
- Journal Name:
- The 28th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Influence maximization aims to select k most-influential vertices or seeds in a network, where influence is defined by a given diffusion process. Although computing optimal seed set is NP-Hard, efficient approximation algorithms exist. However, even state-of-the-art parallel implementations are limited by a sampling step that incurs large memory footprints. This in turn limits the problem size reach and approximation quality. In this work, we study the memory footprint of the sampling process collecting reverse reachability information in the IMM (Influence Maximization via Martingales) algorithm over large real-world social networks. We present a memory-efficient optimization approach (called HBMax) based on Ripples, a state-of-the-art multi-threaded parallel influence maximization solution. Our approach, HBMax, uses a portion of the reverse reachable (RR) sets collected by the algorithm to learn the characteristics of the graph. Then, it compresses the intermediate reverse reachability information with Huffman coding or bitmap coding, and queries on the partially decoded data, or directly on the compressed data to preserve the memory savings obtained through compression. Considering a NUMA architecture, we scale up our solution on 64 CPU cores and reduce the memory footprint by up to 82.1% with average 6.3% speedup (encoding overhead is offset by performance gain from memory reduction) without loss of accuracy. For the largest tested graph Twitter7 (with 1.4 billion edges), HBMax achieves 5.9× compression ratio and 2.2× speedup.more » « less
-
With the emergence of portable DNA sequencers, such as Oxford Nanopore Technology MinION, metagenomic DNA sequencing can be performed in real-time and directly in the field. However, because metagenomic DNA analysis is computationally and memory intensive, and the current methods are designed for batch processing, the current metagenomic tools are not well suited for mobile devices. In this paper, we propose a new memory-efficient method to identify Operational Taxonomic Units (OTUs) in metagenomic DNA streams. Our method is based on finding connected components in overlap graphs constructed over a real-time stream of long DNA reads as produced by MinION platform. We propose an efficient algorithm to maintain connected components when an overlap graph is streamed, and show how redundant information can be removed from the stream by transitive closures. Through experiments on simulated and real-world metagenomic data, we demonstrate that the resulting solution is able to recover OTUs with high precision while remaining suitable for mobile computing devices.more » « less
-
A graph is said to be edge-transitive if its automorphism group acts transitively on its edges. It is known that edge-transitive graphs are either vertex-transitive or bipartite. We present a complete classification of all connected edge-transitive graphs on less than or equal to 20 vertices. We investigate biregular bipartite edge-transitive graphs and present connections to combinatorial designs, and we show that the Cartesian products of complements of complete graphs give an additional family of edge-transitive graphs.more » « less
-
Dyck-reachability is a fundamental formulation for program analysis, which has been widely used to capture properly-matched-parenthesis program properties such as function calls/returns and field writes/reads. Bidirected Dyck-reachability is a relaxation of Dyck-reachability on bidirected graphs where each edge u → ( i v labeled by an open parenthesis “( i ” is accompanied with an inverse edge v → ) i u labeled by the corresponding close parenthesis “) i ”, and vice versa. In practice, many client analyses such as alias analysis adopt the bidirected Dyck-reachability formulation. Bidirected Dyck-reachability admits an optimal reachability algorithm. Specifically, given a graph with n nodes and m edges, the optimal bidirected Dyck-reachability algorithm computes all-pairs reachability information in O ( m ) time. This paper focuses on the dynamic version of bidirected Dyck-reachability. In particular, we consider the problem of maintaining all-pairs Dyck-reachability information in bidirected graphs under a sequence of edge insertions and deletions. Dynamic bidirected Dyck-reachability can formulate many program analysis problems in the presence of code changes. Unfortunately, solving dynamic graph reachability problems is challenging. For example, even for maintaining transitive closure, the fastest deterministic dynamic algorithm requires O ( n 2 ) update time to achieve O (1) query time. All-pairs Dyck-reachability is a generalization of transitive closure. Despite extensive research on incremental computation, there is no algorithmic development on dynamic graph algorithms for program analysis with worst-case guarantees. Our work fills the gap and proposes the first dynamic algorithm for Dyck reachability on bidirected graphs. Our dynamic algorithms can handle each graph update ( i.e. , edge insertion and deletion) in O ( n ·α( n )) time and support any all-pairs reachability query in O (1) time, where α( n ) is the inverse Ackermann function. We have implemented and evaluated our dynamic algorithm on an alias analysis and a context-sensitive data-dependence analysis for Java. We compare our dynamic algorithms against a straightforward approach based on the O ( m )-time optimal bidirected Dyck-reachability algorithm and a recent incremental Datalog solver. Experimental results show that our algorithm achieves orders of magnitude speedup over both approaches.more » « less