Due to its decentralized nature, Federated Learning (FL) lends itself to adversarial attacks in the form of backdoors during training. The goal of a backdoor is to corrupt the performance of the trained model on specific sub-tasks (e.g., by classifying green cars as frogs). A range of FL backdoor attacks have been introduced in the literature, but also methods to defend against them, and it is currently an open question whether FL systems can be tailored to be robust against backdoors. In this work, we provide evidence to the contrary. We first establish that, in the general case, robustness tomore »
Ditto: Fair and Robust Federated Learning Through Personalization
Fairness and robustness are two important concerns for federated learning systems. In this work, we identify that robustness to data and model poisoning attacks and fairness, measured as the uniformity of performance across devices, are competing constraints in statistically heterogeneous networks. To address these constraints, we propose employing a simple, general framework for personalized federated learning, Ditto, and develop a scalable solver for it. Theoretically, we analyze the ability of Ditto to achieve fairness and robustness simultaneously on a class of linear problems. Empirically, across a suite of federated datasets, we show that Ditto not only achieves competitive performance relative to recent personalization methods, but also enables more accurate, robust, and fair models relative to state-of-the-art fair or robust baselines.
- Award ID(s):
- 1838017
- Publication Date:
- NSF-PAR ID:
- 10311656
- Journal Name:
- International Conference on Machine Learning
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ranzato, M. ; Beygelzimer, A. ; Liang, P.S. ; Vaughan, J.W. ; Dauphin, Y. (Ed.)Fairness and robustness are critical elements of Trustworthy AI that need to be addressed together. Fairness is about learning an unbiased model while robustness is about learning from corrupted data, and it is known that addressing only one of them may have an adverse affect on the other. In this work, we propose a sample selection-based algorithm for fair and robust training. To this end, we formulate a combinatorial optimization problem for the unbiased selection of samples in the presence of data corruption. Observing that solving this optimization problem is strongly NP-hard, we propose a greedy algorithm that is efficientmore »
-
To address the sample selection bias between the training and test data, previous research works focus on reweighing biased training data to match the test data and then building classification models on there weighed raining data. However, how to achieve fairness in the built classification models is under-explored. In this paper, we propose a framework for robust and fair learning under sample selection bias. Our framework adopts there weighing estimation approach for bias correction and the minimax robust estimation approach for achieving robustness on prediction accuracy. Moreover, during the minimax optimization, the fairness is achieved under the worst case, whichmore »
-
Modern distributed machine learning (ML) training workloads benefit significantly from leveraging GPUs. However, significant contention ensues when multiple such workloads are run atop a shared cluster of GPUs. A key question is how to fairly apportion GPUs across workloads. We find that established cluster scheduling disciplines are a poor fit because of ML workloads' unique attributes: ML jobs have long-running tasks that need to be gang-scheduled, and their performance is sensitive to tasks' relative placement. We propose Themis, a new scheduling framework for ML training workloads. It's GPU allocation policy enforces that ML workloads complete in a finish-time fair manner,more »
-
Making predictions that are fair with regard to protected attributes (race, gender, age, etc.) has become an important requirement for classification algorithms. Existing techniques derive a fair model from sampled labeled data relying on the assumption that training and testing data are identically and independently drawn (iid) from the same distribution. In practice, distribution shift can and does occur between training and testing datasets as the characteristics of individuals interacting with the machine learning system change. We investigate fairness under covariate shift, a relaxation of the iid assumption in which the inputs or covariates change while the conditional label distributionmore »