skip to main content


This content will become publicly available on May 27, 2024

Title: Fairness for robust learning to rank
While conventional ranking systems focus solely on maximizing the utility of the ranked items to users, fairness-aware ranking systems additionally try to balance the exposure based on different protected attributes such as gender or race. To achieve this type of group fairness for ranking, we derive a new ranking system from the first principles of distributional robustness. We formulate a minimax game between a player choosing a distribution over rankings to maximize utility while satisfying fairness constraints against an adversary seeking to minimize utility while matching statistics of the training data. Rather than maximizing utility and fairness for the specific training data, this approach efficiently produces robust utility and fairness for a much broader family of distributions of rankings that include the training data. We show that our approach provides better utility for highly fair rankings than existing baseline methods.  more » « less
Award ID(s):
1939743
NSF-PAR ID:
10486469
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature Switzerland
Date Published:
Journal Name:
Pacific-Asia Conference on Knowledge Discovery and Data Mining
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While conventional ranking systems focus solely on maximizing the utility of the ranked items to users, fairness-aware ranking systems additionally try to balance the exposure based on different protected attributes such as gender or race. To achieve this type of group fairness for ranking, we derive a new ranking system from the first principles of distributional robustness. We formulate a minimax game between a player choosing a distribution over rankings to maximize utility while satisfying fairness constraints against an adversary seeking to minimize utility while matching statistics of the training data. Rather than maximizing utility and fairness for the specific training data, this approach efficiently produces robust utility and fairness for a much broader family of distributions of rankings that include the training data. We show that our approach provides better utility for highly fair rankings than existing baseline methods. 
    more » « less
  2. A large number of two-sided markets are now mediated by search and recommender systems, ranging from online retail and streaming entertainment to employment and romantic-partner matching. I will discuss in this talk how the design decisions that go into these search and recommender systems carry substantial power in shaping markets and allocating opportunity to the participants. This does not only raise legal and fairness questions, but also questions about how these systems shape incentives and the long-term effectiveness of the market. At the core of these questions lies the problem of where to rank each item, and how this affects both sides of the market. While it is well understood how to maximize the utility to the users, this talk focuses on how rankings affect the items that are being ranked. From the items perspective, the ranking system is an arbiter of exposure and thus economic opportunity. I will discuss how machine learning algorithms that follow the conventional Probability Ranking Principle [1] can lead to undesirable and unfair exposure allocation for both exogenous and endogenous reasons. Exogenous reasons often manifest themselves as biases in the training data, which then get reflected in the learned ranking policy. But even when trained with unbiased data, reasons endogenous to the system can lead to unfair or undesirable allocation of opportunity. To overcome these challenges, I will present new machine learning algorithms [2,3,4] that directly address both endogenous and exogenous factors, allowing the designer to tailor the ranking policy to be appropriate for the specific two-sided market. 
    more » « less
  3. Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only do the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users -- as done by virtually all learning-to-rank algorithms -- can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust. 
    more » « less
  4. Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users – as done by virtually all learning-to-rank algorithms – can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust. 
    more » « less
  5. Many selection procedures involve ordering candidates according to their qualifications. For example, a university might order applicants according to a perceived probability of graduation within four years, and then select the top 1000 applicants. In this work, we address the problem of ranking members of a population according to their “probability” of success, based on a training set of historical binary outcome data (e.g., graduated in four years or not). We show how to obtain rankings that satisfy a number of desirable accuracy and fairness criteria, despite the coarseness of the training data. As the task of ranking is global (the rank of every individual depends not only on their own qualifications, but also on every other individuals’ qualifications), ranking is more subtle and vulnerable to manipulation than standard prediction tasks. Towards mitigating unfair discrimination caused by inaccuracies in rankings, we develop two parallel definitions of evidence-based rankings. The first definition relies on a semantic notion of domination-compatibility: if the training data suggest that members of a set S are more qualified (on average) than the members of T, then a ranking that favors T over S (where T dominates S) is blatantly inconsistent with the evidence, and likely to be discriminatory. The definition asks for domination-compatibility, not just for a pair of sets, but rather for every pair of sets from a rich collection C of subpopulations. The second definition aims at precluding even more general forms of discrimination; this notion of evidence-consistency requires that the ranking must be justified on the basis of consistency with the expectations for every set in the collection C. Somewhat surprisingly, while evidence-consistency is a strictly stronger notion than domination-compatibility when the collection C is predefined, the two notions are equivalent when the collection C may depend on the ranking in question. 
    more » « less