With the rapid innovation of GPUs, heterogeneous GPU clusters in both public clouds and on-premise data centers have become increasingly commonplace. In this paper, we demonstrate how pipeline parallelism, a technique wellstudied for throughput-oriented deep learning model training, can be used effectively for serving latency-bound model inference, e.g., in video analytics systems, on heterogeneous GPU clusters. Our work exploits the synergy between diversity in model layers and diversity in GPU architectures, which results in comparable inference latency for many layers when running on low-class and high-class GPUs. We explore how such overlooked capability of low-class GPUs can be exploited using pipeline parallelism and present a novel inference serving system, PPipe, that employs pool-based pipeline parallelism via an MILP-based control plane and a data plane that performs resource reservation-based adaptive batching. Evaluation results on diverse workloads (18 CNN models) show that PPipe achieves 41.1%–65.5% higher utilization of low-class GPUs while maintaining high utilization of high-class GPUs, leading to 32.2%–75.1% higher serving throughput compared to various baselines. 
                        more » 
                        « less   
                    
                            
                            Low latency RNN inference with cellular batching
                        
                    
    
            Performing inference on pre-trained neural network models must meet the requirement of low-latency, which is often at odds with achieving high throughput. Existing deep learning systems use batching to improve throughput, which do not perform well when serving Recurrent Neural Networks with dynamic dataflow graphs. We propose the technique of cellular batching, which improves both the latency and throughput of RNN inference. Unlike existing systems that batch a fixed set of dataflow graphs, cellular batching makes batching decisions at the granularity of an RNN "cell" (a subgraph with shared weights) and dynamically assembles a batched cell for execution as requests join and leave the system. We implemented our approach in a system called BatchMaker. Experiments show that BatchMaker achieves much lower latency and also higher throughput than existing systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1816717
- PAR ID:
- 10311675
- Date Published:
- Journal Name:
- EuroSys '18: Proceedings of the Thirteenth EuroSys Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Existing machine learning inference-serving systems largely rely on hardware scaling by adding more devices or using more powerful accelerators to handle increasing query demands. However, hardware scaling might not be feasible for fixed-size edge clusters or private clouds due to their limited hardware resources. A viable alternate solution is accuracy scaling, which adapts the accuracy of ML models instead of hardware resources to handle varying query demands. This work studies the design of a high-throughput inferenceserving system with accuracy scaling that can meet throughput requirements while maximizing accuracy. To achieve the goal, this work proposes to identify the right amount of accuracy scaling by jointly optimizing three sub-problems: how to select model variants, how to place them on heterogeneous devices, and how to assign query workloads to each device. It also proposes a new adaptive batching algorithm to handle variations in query arrival times and minimize SLO violations. Based on the proposed techniques, we build an inference-serving system called Proteus and empirically evaluate it on real-world and synthetic traces. We show that Proteus reduces accuracy drop by up to 3× and latency timeouts by 2-10× with respect to baseline schemes, while meeting throughput requirements.more » « less
- 
            Existing machine learning inference-serving systems largely rely on hardware scaling by adding more devices or using more powerful accelerators to handle increasing query demands. However, hardware scaling might not be feasible for fixed-size edge clusters or private clouds due to their limited hardware resources. A viable alternate solution is accuracy scaling, which adapts the accuracy of ML models instead of hardware resources to handle varying query demands. This work studies the design of a high-throughput inferenceserving system with accuracy scaling that can meet throughput requirements while maximizing accuracy. To achieve the goal, this work proposes to identify the right amount of accuracy scaling by jointly optimizing three sub-problems: how to select model variants, how to place them on heterogeneous devices, and how to assign query workloads to each device. It also proposes a new adaptive batching algorithm to handle variations in query arrival times and minimize SLO violations. Based on the proposed techniques, we build an inference-serving system called Proteus and empirically evaluate it on real-world and synthetic traces. We show that Proteus reduces accuracy drop by up to 3× and latency timeouts by 2-10× with respect to baseline schemes, while meeting throughput requirements.more » « less
- 
            Serverless computing is a new pay-per-use cloud service paradigm that automates resource scaling for stateless functions and can potentially facilitate bursty machine learning serving. Batching is critical for latency performance and cost-effectiveness of machine learning inference, but unfortunately it is not supported by existing serverless platforms due to their stateless design. Our experiments show that without batching, machine learning serving cannot reap the benefits of serverless computing. In this paper, we present BATCH, a framework for supporting efficient machine learning serving on serverless platforms. BATCH uses an optimizer to provide inference tail latency guarantees and cost optimization and to enable adaptive batching support. We prototype BATCH atop of AWS Lambda and popular machine learning inference systems. The evaluation verifies the accuracy of the analytic optimizer and demonstrates performance and cost advantages over the state-of-the-art method MArk and the state-of-the-practice tool SageMaker.more » « less
- 
            Deep neural networks (DNNs) come with many forms, such as convolutional neural networks, multilayer perceptron and recurrent neural networks, to meet diverse needs of machine learning applications. However, existing DNN accelerator designs, when used to execute multiple neural networks, suffer from underutilization of processing elements, heavy feature map traffic, and large area overhead. In this paper, we propose a novel approach, Polymorphic Accelerators, to address the flexibility issue fundamentally. We introduce the abstraction of logical accelerators to decouple the fixed mapping with physical resources. Three procedures are proposed that work collaboratively to reconfigure the accelerator for the current network that is being executed and to enable cross-layer data reuse among logical accelerators. Evaluation results show that the proposed approach achieves significant improvement in data reuse, inference latency and performance, e.g., 1.52x and 1.63x increase in throughput compared with state-of-the-art flexible dataflow approach and resource partitioning approach, respectively. This demonstrates the effectiveness and promise of polymorphic accelerator architecture.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    