Context Engineering design skills are essential for engineering students to succeed in their careers. Engineering design is a skill that is in high demand in the current job market and should be prioritized in education. Purpose While design has been acknowledged as a cognitive skill in research, there exists limited literature addressing the cognitive foundations of design thinking. Hence, engineering educators must understand the engineering design process, as well as the different ways students approach design problem-solving and the potential reason behind these differences. To understand how people solve design problems, we need to consider how their minds work and the strategies they use. Spatial ability stands out as a cognitive factor that is crucial for designers and holds significance in well-established theories and models of intelligence. However, to date, research exploring the impact of spatial ability on design thinking and its influence on problem-scoping behaviors remains limited. This paper examines how engineering students’ spatial skills influence how they define the scope of open-ended design problems. The central research question that guides this paper is “How do design problem-scoping behaviors differ for engineering students based on their spatial scores?”. Methods The researchers used a mixed methods research approach to answer their research question, collecting qualitative and quantitative data in two phases. One hundred twenty-seven undergraduate engineering students completed four tests that measure spatial reasoning skills in the quantitative phase and 101 students returned to finish the three design tasks in the second phase. This paper will examine the performance of students with low spatial and high spatial skills on one of the completed design tasks. Outcomes From the study, it was clear that spatial skills have an impact on the design-scoping behaviors of the undergraduate engineering students. It was inferred that high spatial skill visualizers emphasized the technical details of the design problem whereas low spatial skill visualizers emphasized the context of the design problem during their problem-scoping behavior. A Mann-Whitney test revealed there was a statistically significant difference in detail- and context-focused segments between the high and low spatial visualizer groups. Conclusion This research study confirms that a relationship exists between spatial and design skills. The study also found that undergraduate engineering students with different levels of spatial skills had different approaches to scoping design problems.
more »
« less
MODELLING AND PROFILING STUDENT DESIGNERS’ COGNITIVE COMPETENCIES IN COMPUTER-AIDED DESIGN
Abstract There are three approaches to studying designers – through their cognitive profile, design behaviors, and design artifacts (e.g., quality). However, past work has rarely considered all three data domains together. Here we introduce and describe a framework for a comprehensive approach to engineering design, and discuss how the insights may benefit engineering design research and education. To demonstrate the proposed framework, we conducted an empirical study with a solar energy system design problem. Forty-six engineering students engaged in a week-long computer-aided design challenge that assessed their design behavior and artifacts, and completed a set of psychological tests to measure cognitive competencies. Using a machine learning approach consisting of k-means, hierarchical, and spectral clustering, designers were grouped by similarities on the psychological tests. Significant differences were revealed between designer groups in their sequential design behavior, suggesting that a designer's cognitive profile is related to how they engage in the design process.
more »
« less
- Award ID(s):
- 1842588
- PAR ID:
- 10311692
- Date Published:
- Journal Name:
- Proceedings of the Design Society
- Volume:
- 1
- ISSN:
- 2732-527X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context Engineering design skills are essential for engineering students to succeed in their careers. Engineering design is a skill that is in high demand in the current job market and should be prioritized in education. Purpose While design has been acknowledged as a cognitive skill in research, there exists limited literature addressing the cognitive foundations of design thinking. Hence, engineering educators must understand the engineering design process, as well as the different ways students approach design problem-solving and the potential reason behind these differences. To understand how people solve design problems, we need to consider how their minds work and the strategies they use. Spatial ability stands out as a cognitive factor that is crucial for designers and holds significance in well-established theories and models of intelligence. However, to date, research exploring the impact of spatial ability on design thinking and its influence on problem-scoping behaviors remains limited. This paper examines how engineering students’ spatial skills influence how they define the scope of open-ended design problems. The central research question that guides this paper is “How do design problem-scoping behaviors differ for engineering students based on their spatial scores?”. Methods The researchers used a mixed methods research approach to answer their research question, collecting qualitative and quantitative data in two phases. One hundred twenty-seven undergraduate engineering students completed four tests that measure spatial reasoning skills in the quantitative phase and 101 students returned to finish the three design tasks in the second phase. This paper will examine the performance of students with low spatial and high spatial skills on one of the completed design tasks. Outcomes From the study, it was clear that spatial skills have an impact on the design-scoping behaviors of the undergraduate engineering students. It was inferred that high spatial skill visualizers emphasized the technical details of the design problem whereas low spatial skill visualizers emphasized the context of the design problem during their problem-scoping behavior. A Mann-Whitney test revealed there was a statistically significant difference in detail- and context-focused segments between the high and low spatial visualizer groups. Conclusion This research study confirms that a relationship exists between spatial and design skills. The study also found that undergraduate engineering students with different levels of spatial skills had different approaches to scoping design problems.more » « less
-
null (Ed.)Abstract Product/service systems (PSSs) are increasingly found in markets, and more resources are being invested in PSS design. Despite the substantial research into PSS design, the current literature exhibits an incomplete understanding of it as a cognitive activity. This article demonstrates that the methods used to analyze product designers’ cognitive behavior can be used to produce comparable and commensurable results when analyzing PSS designers. It also generates empirical grounding for the development of hypotheses based on a cognitive study of a PSS design session in a laboratory environment using protocol analysis. This study is a part of a larger project comparing PSS design with product design. The results, which are based on the function–behavior–structure coding scheme, show that PSS design, when coded using this scheme, can be quantitatively compared with product design. Five hypotheses were developed based on the results of the study of this design session concerning where and how designers expend their cognitive design effort. These hypotheses can be used to design experiments that test them and provide the grounding for a fuller understanding of PSS design.more » « less
-
Abstract Engineering design entails making value‐laden judgments against ill‐defined, ambiguous, and/or competing sociotechnical criteria. In this article, we argue that such conditions make engineering designers particularly susceptible to the potentially deleterious effects of mis/disinformation in the processes and practices of engineering design, their engagement with people and communities, and in the production and evaluations of the artifacts they produce. We begin by critiquing dominant approaches to engineering design education, specifically, engineering education's social‐technical dualism and the ubiquitous ideology of depoliticization, which has exacerbated the effects of mis/disinformation in engineering design. We follow by outlining a framework for developing students' capacity for mitigating its effects in the specific context of engineering design thinking and making value‐laden engineering judgments and decision‐making. We envision three areas of opportunity for engineering design education to teach students strategies for navigating these challenges when engaging with (a) the processes and practices of engineering, which reflect the unique types of information students engage with across the design process, (b) people and their communities, including the strategic and careful performance of activities for gathering information, while mitigating the harms to misinformation and disinformation and maximizing the benefits of community involvement, and (c) the social and technical criteria of engineering design outcomes in the form of artifacts (e.g., products, processes).more » « less
-
Present bias—the tendency to favor immediate gains over long-term benefits—can negatively affect design decisions in construction engineering. Designers often prioritize short-term economic gains that compromises the resilience of the asset, leading to increased cost of remediation in the future. This dissertation explores how mental visualization through future thinking and the use of generative AI tools can help reduce present bias during early-stage design tasks. Three experimental conditions were tested: present thinking (control), future thinking, and AI-assisted future thinking. Civil engineering students (n = 90) participated in constraints identification and concept design tasks for a campus redevelopment project, while their verbal responses and brain activity were recorded. Functional near-infrared spectroscopy (fNIRS) was used to measure cognitive load. To analyze design narrative, qualitative coding and natural language processing (NLP) techniques such as semantic similarity and text network analysis were used. Results show that future thinking and AI assistance improved the quality and future orientation of design outputs. The AI-assisted group identified more climate-related risks, demonstrated higher alignment with futureproofing concepts, and showed more coherent design narratives. These improvements were achieved with reduced cognitive load. Notably, the influence of AI assistance extended beyond the phase in which it was used and enhanced performance in subsequent design stage. The findings support the role of AI as a cognitive support tool that can enhance design thinking, reduce cognitive load, and lead to more resilient and sustainable design outcomes in construction engineering.more » « less
An official website of the United States government

