skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coulomb branch quantization and abelianized monopole bubbling
A bstract We develop an approach to the study of Coulomb branch operators in 3D $$ \mathcal{N} $$ N = 4 gauge theories and the associated quantization structure of their Coulomb branches. This structure is encoded in a one-dimensional TQFT subsector of the full 3D theory, which we describe by combining several techniques and ideas. The answer takes the form of an associative and noncommutative star product algebra on the Coulomb branch. For “good” and “ugly” theories (according to the Gaiotto-Witten classification), we also exhibit a trace map on this algebra, which allows for the computation of correlation functions and, in particular, guarantees that the star product satisfies a truncation condition. This work extends previous work on abelian theories to the non-abelian case by quantifying the monopole bubbling that describes screening of GNO boundary conditions. In our approach, monopole bubbling is determined from the algebraic consistency of the OPE. This also yields a physical proof of the Bullimore-Dimofte-Gaiotto abelianization description of the Coulomb branch.  more » « less
Award ID(s):
1820651
PAR ID:
10311701
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2019
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We explore the T-duality web of 6D Heterotic Little String Theories, focusing on flavor algebra reducing deformations. A careful analysis of the full flavor algebra, including Abelian factors, shows that the flavor rank is preserved under T-duality. This suggests a new T-duality invariant in addition to the Coulomb branch dimension and the two-group structure constants. We also engineer Little String Theories with non-simply laced flavor algebras, whose appearance we attribute to certain discrete 3-form fluxes in M-theory. Geometrically, these theories are engineered in F-theory with non-Kähler favorable K3 fibers. This geometric origin leads us to propose that freezing fluxes are preserved across T-duality. Along the way, we discuss various exotic models, including two inequivalent Spin(32)/ℤ2models that are dual to the same E8× E8theory, and a family of self-T-dual models. 
    more » « less
  2. A bstract It is known that some theories of class S are actually factorized into multiple decoupled nontrivial four-dimensional $$ \mathcal{N} $$ N = 2 theories. We propose a way of constructing examples of this phenomenon using the physics of half-BPS surface defects, and check that it works in one simple example: it correctly reproduces a known realization of two copies of $$ \mathcal{N} $$ N = 2 superconformal SU(2) QCD, describing this factorized theory as a class S theory of type A 3 on a five-punctured sphere with a twist line. Separately, we also present explicit checks that the Coulomb branch of a putative factorized class S theory has the expected product structure, in two examples. 
    more » « less
  3. A bstract Motivated by applications to soft supersymmetry breaking, we revisit the expansion of the Seiberg-Witten solution around the multi-monopole point on the Coulomb branch of pure SU( N ) $$ \mathcal{N} $$ N = 2 gauge theory in four dimensions. At this point N − 1 mutually local magnetic monopoles become massless simultaneously, and in a suitable duality frame the gauge couplings logarithmically run to zero. We explicitly calculate the leading threshold corrections to this logarithmic running from the Seiberg-Witten solution by adapting a method previously introduced by D’Hoker and Phong. We compare our computation to existing results in the literature; this includes results specific to SU(2) and SU(3) gauge theories, the large- N results of Douglas and Shenker, as well as results obtained by appealing to integrable systems or topological strings. We find broad agreement, while also clarifying some lingering inconsistencies. Finally, we explicitly extend the results of Douglas and Shenker to finite N , finding exact agreement with our first calculation. 
    more » « less
  4. The constraining mathematical structure of the Coulomb branch of four dimen- sional N = 2 supersymmetric theories is discussed. The presentation follows a somewhat different route from other excellent reviews on the subject and it is geared towards using this tool to classify four dimensional N = 2 superconformal field theories. This is the writeup of the lectures given at the Winter School “YRISW 2020” to appear in a special issue of JPhysA. 
    more » « less
  5. A bstract We study the stratification of the singular locus of four dimensional $$ \mathcal{N} $$ N = 2 Coulomb branches. We present a set of self-consistency conditions on this stratification which can be used to extend the classification of scale-invariant rank 1 Coulomb branch geometries to two complex dimensions, and beyond. The calculational simplicity of the arguments presented here stems from the fact that the main ingredients needed — the rank 1 deformation patterns and the pattern of inclusions of rank 2 strata — are discrete topological data which satisfy strong self-consistency conditions through their relationship to the central charges of the SCFT. This relationship of the stratification data to the central charges is used here, but is derived and explained in a companion paper [1] by one of the authors. We illustrate the use of these conditions by re-analyzing many previously-known examples of rank 2 SCFTs, and also by finding examples of new theories. The power of these conditions stems from the fact that for Coulomb branch stratifications a conjecturally complete list of physically allowed “elementary slices” is known. By contrast, constraining the possible elementary slices of symplectic singularities relevant for Higgs branch stratifications remains an open problem. 
    more » « less