Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

null (Ed.)A bstract Twodimensional SU( N ) gauge theory coupled to a Majorana fermion in the adjoint representation is a nice toy model for higherdimensional gauge dynamics. It possesses a multitude of “gluinoball” bound states whose spectrum has been studied using numerical diagonalizations of the lightcone Hamiltonian. We extend this model by coupling it to N f flavors of fundamental Dirac fermions (quarks). The extended model also contains mesonlike bound states, both bosonic and fermionic, which in the large N limit decouple from the gluinoballs. We study the large N meson spectrum using the Discretized LightCone Quantization (DLCQ). When all the fermions are massless, we exhibit an exact $$ \mathfrak{osp} $$ osp (14) symmetry algebra that leads to an infinite number of degeneracies in the DLCQ approach. More generally, we show that many singletrace states in the theory are threshold bound states that are degenerate with multitrace states. These exact degeneracies can be explained using the KacMoody algebra of the SU( N ) current. We also present strong numerical evidence that additional threshold states appear in the continuum limit. Finally, we make the quarks massive while keeping the adjoint fermion massless. In this case too, we observe some exact degeneracies that show that the spectrum of mesons becomes continuous above a certain threshold. This demonstrates quantitatively that the fundamental string tension vanishes in the massless adjoint QCD 2 without explicit fourfermion operators.more » « less

A bstract We study the space of 3d $$ \mathcal{N} $$ N = 6 SCFTs by combining numerical bootstrap techniques with exact results derived using supersymmetric localization. First we derive the superconformal block decomposition of the fourpoint function of the stress tensor multiplet superconformal primary. We then use supersymmetric localization results for the $$ \mathcal{N} $$ N = 6 U( N ) k × U( N + M ) −k ChernSimonsmatter theories to determine two protected OPE coefficients for many values of N, M, k . These two exact inputs are combined with the numerical bootstrap to compute precise rigorous islands for a wide range of N, k at M = 0, so that we can nonperturbatively interpolate between SCFTs with Mtheory duals at small k and string theory duals at large k . We also present evidence that the localization results for the U(1) 2 M × U (1 + M ) − 2 M theory, which has a vectorlike large M limit dual to higher spin theory, saturates the bootstrap bounds for certain protected CFT data. The extremal functional allows us to then conjecturally reconstruct lowlying CFT data for this theory.more » « less

A bstract We study modular invariants arising in the fourpoint functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU( N ) superYangMills theory, in the limit where N is taken to be large while the complexified YangMills coupling τ is held fixed. The specific fourpoint functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2 ∗ theory with respect to the squashing parameter b and mass parameter m , evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1 /N expansion, these fourth derivatives are modular invariant functions of ( τ, $$ \overline{\tau} $$ τ ¯ ). We present evidence that at halfinteger orders in 1 /N , these modular invariants are linear combinations of nonholomorphic Eisenstein series, while at integer orders in 1 /N , they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the lowenergy expansion of the fourgraviton amplitude in type IIB superstring theory in tendimensional flat space and have interesting implications for the structure of the analogous expansion in AdS 5 × S 5 .more » « less

A bstract When the SU( N ) $$ \mathcal{N} $$ N = 4 superYangMills (SYM) theory with complexified gauge coupling τ is placed on a round foursphere and deformed by an $$ \mathcal{N} $$ N = 2preserving mass parameter m , its free energy F ( m, τ, $$ \overline{\tau} $$ τ ¯ ) can be computed exactly using supersymmetric localization. In this work, we derive a new exact relation between the fourth derivative $$ {\partial}_m^4F\left(m,\tau, \overline{\tau}\right)\left{{}_m}_{=0}\right. $$ ∂ m 4 F m τ τ ¯ m = 0 of the sphere free energy and the integrated stresstensor multiplet fourpoint function in the $$ \mathcal{N} $$ N = 4 SYM theory. We then apply this exact relation, along with various other constraints derived in previous work (coming from analytic bootstrap, the mixed derivative $$ {\partial}_{\tau }{\partial}_{\overline{\tau}}{\partial}_m^2F\left(m,\tau, \overline{\tau}\right)\left{{}_m}_{=0}\right. $$ ∂ τ ∂ τ ¯ ∂ m 2 F m τ τ ¯ m = 0 , and type IIB superstring theory scattering amplitudes) to determine various perturbative terms in the large N and large ’t Hooft coupling λ expansion of the $$ \mathcal{N} $$ N = 4 SYM correlator at separated points. In particular, we determine the leading large λ term in the $$ \mathcal{N} $$ N = 4 SYM correlation function at order 1 /N 8 . This is three orders beyond the planar limit.more » « less

A bstract We study the fourpoint function of the lowestlying halfBPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) superYangMills theory and its relation to the flatspace fourgraviton amplitude in type IIB superstring theory. We work in a large N expansion in which the complexified YangMills coupling τ is fixed. In this expansion, nonperturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the massdeformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the fourpoint correlator at separated points. In a normalization where the twopoint functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the fourpoint correlator are proportional to the nonholomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB Smatrix arising from R 4 and D 4 R 4 contact interactions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of nonholomorphic Eisenstein series with halfinteger index, which are manifestly SL(2 , ℤ) invariant.more » « less

A bstract We compute 1 /λ corrections to the fourpoint functions of halfBPS operators in SU( N ) $$ \mathcal{N} $$ N = 4 superYangMills theory at large N and large ’t Hooft coupling λ = $$ {g}_{\mathrm{YM}}^2N $$ g YM 2 N using two methods. Firstly, we relate integrals of these correlators to derivatives of the mass deformed S 4 free energy, which was computed at leading order in large N and to all orders in 1 /λ using supersymmetric localization. Secondly, we use AdS/CFT to relate these 1 /λ corrections to higher derivative corrections to supergravity for scattering amplitudes of KaluzaKlein scalars in IIB string theory on AdS 5 × S 5 , which in the flat space limit are known from worldsheet calculations. These two methods match at the order corresponding to the tree level R 4 interaction in string theory, which provides a precise check of AdS/CFT beyond supergravity, and allow us to derive the holographic correlators to tree level D 4 R 4 order. Combined with constraints from [1], our results can be used to derive CFT data to oneloop D 4 R 4 order. Finally, we use AdS/CFT to fix these correlators in the limit where N is taken to be large while g YM is kept fixed. In this limit, we present a conjecture for the small mass limit of the S 4 partition function that includes all instanton corrections and is written in terms of the same Eisenstein series that appear in the study of string theory scattering amplitudes.more » « less

A bstract We develop an approach to the study of Coulomb branch operators in 3D $$ \mathcal{N} $$ N = 4 gauge theories and the associated quantization structure of their Coulomb branches. This structure is encoded in a onedimensional TQFT subsector of the full 3D theory, which we describe by combining several techniques and ideas. The answer takes the form of an associative and noncommutative star product algebra on the Coulomb branch. For “good” and “ugly” theories (according to the GaiottoWitten classification), we also exhibit a trace map on this algebra, which allows for the computation of correlation functions and, in particular, guarantees that the star product satisfies a truncation condition. This work extends previous work on abelian theories to the nonabelian case by quantifying the monopole bubbling that describes screening of GNO boundary conditions. In our approach, monopole bubbling is determined from the algebraic consistency of the OPE. This also yields a physical proof of the BullimoreDimofteGaiotto abelianization description of the Coulomb branch.more » « less