skip to main content


Title: Latent value in humiliation: A design thinking tool to enhance empathy in creative ideation
Design thinking emphasizes that in addition to being creative, design solutions should be empathetic. Yet, research suggests there may be a tension between these goals, where focusing on empathy comes at a cost to creativity, sometimes by inducing fixation. We investigated this phenomenon through a quasi-experimental design with novice designers, contrasting two structured ideation techniques in which participants (N = 47) generated bad ideas prior to proposing beneficial ideas. Specifically, they used the wrong theory protocol (WTP) to generate harmful and humiliating ideas, and a variant in which they instead generated silly and impossible ideas (SIP). We used qualitative analysis to characterize their bad and beneficial ideas. Across two realistic design challenges, we found students’ initial bad design work was shaped by the technique they used, and that those who generated humiliating ideas were more likely to generate empathetic beneficial ideas afterward. No systematic differences were found in the breadth of solution ideas, suggesting this technique does not come at a cost to creativity. As a quick and easy-to-use technique, generating humiliating ideas prior to generating beneficial ideas holds promise as a means to reach design solutions that are both empathetic and creative.  more » « less
Award ID(s):
1751369
NSF-PAR ID:
10311753
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Design Creativity and Innovation
Volume:
10
ISSN:
2165-0349
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The capabilities of additive manufacturing (AM) open up designers’ solution space and enable them to build designs previously impossible through traditional manufacturing. To leverage AM, designers must not only generate creative ideas, but also propagate these ideas without discarding them in the early design stages. This emphasis on selecting creative ideas is particularly important in design for AM (DfAM), as ideas perceived as infeasible through the traditional design for manufacturing lens could now be feasible with AM. Several studies have discussed the role of DfAM in encouraging creative idea generation; however, there is a need to understand concept selection in DfAM. In this paper, we investigated the effect of two variations in DfAM education: 1) restrictive DfAM and 2) dual DfAM (opportunistic and restrictive) on students’ concept selection process. Specifically, we compared the creativity of the concepts generated by the students to the creativity of the concepts selected by them. Further, we performed qualitative analyses to explore the rationale provided by the students in making these design decisions. From the results, we see that teams from both educational groups select ideas of greater usefulness; however, only teams from the restrictive DfAM group select ideas of higher uniqueness and overall creativity. Further, we see that introducing students to opportunistic DfAM increases their emphasis on the complexity of designs when evaluating and selecting them. These results highlight the need for DfAM education to encourage AM designers to not just generate but also select creative ideas. 
    more » « less
  2. null (Ed.)
    Abstract The capabilities of additive manufacturing (AM) open up designers’ solution space and enable them to build designs previously impossible through traditional manufacturing (TM). To leverage this design freedom, designers must emphasize opportunistic design for AM (DfAM), i.e., design techniques that leverage AM capabilities. Additionally, designers must also emphasize restrictive DfAM, i.e., design considerations that account for AM limitations, to ensure that their designs can be successfully built. Therefore, designers must adopt a “dual” design mindset—emphasizing both, opportunistic and restrictive DfAM—when designing for AM. However, to leverage AM capabilities, designers must not only generate creative ideas for AM but also select these creative ideas during the concept selection stage. Design educators must specifically emphasize selecting creative ideas in DfAM, as ideas perceived as infeasible through the traditional design for manufacturing lens may now be feasible with AM. This emphasis could prevent creative but feasible ideas from being discarded due to their perceived infeasibility. While several studies have discussed the role of DfAM in encouraging creative idea generation, there is a need to investigate concept selection in DfAM. In this paper, we investigated the effects of four variations in DfAM education: (1) restrictive, (2) opportunistic, (3) restrictive followed by opportunistic (R-O), and (4) opportunistic followed by restrictive (O-R), on students’ concept selection process. We compared the creativity of the concepts generated by students to the creativity of the concepts they selected. The creativity of designs was measured on four dimensions: (1) uniqueness, (2) usefulness, (3) technical goodness, and (4) overall creativity. We also performed qualitative analyses to gain insight into the rationale provided by students when making their design decisions. From the results, we see that only teams from the restrictive and dual O-R groups selected ideas of higher uniqueness and overall creativity. In contrast, teams from the dual R-O DfAM group selected ideas of lower uniqueness compared with the mean uniqueness of ideas generated. Finally, we see that students trained in opportunistic DfAM emphasized minimizing build material the most, whereas those trained only in restrictive DfAM emphasized minimizing build time. These results highlight the need for DfAM education to encourage AM designers to not just generate creative ideas but also have the courage to select them for the next stage of design. 
    more » « less
  3. null (Ed.)
    Nearly 60 years ago, Thomas Kuhn revolutionized how we think of scientific discovery and innovation when he identified that scientific change can occur in incremental developments that improve upon existing solutions, or it can occur as drastic change in the form of a paradigm shift. In engineering design, both types of scientific change are critical when exploring the solution space. However, most methods of examining design outputs look at whether an idea is creative or not and not the type of creativity that is deployed or if we can predict what types of individuals or teams is more likely to develop a paradigm-shifting idea. Without knowing how to identify who will generate ideas that fit a certain paradigm, we do not know how to build teams that can develop ideas that better explore the solution space. This study provides the first attempt at answering this question through an empirical study with 60 engineering design student teams over the course of a 4- and 8-week design project. Specifically, we sought to identify the role of cognitive style using KAI score, derived from Kirton’s Adaption-Innovation (A-I) theory, on the paradigm-relatedness of ideas generated by individuals and teams. We also sought to investigate the role of crowdsourcing for measuring the paradigm-relatedness of design solutions. The results showed that KAI was positively related to a greater likelihood of an individual’s idea being categorized as paradigm-breaking. In addition, the team KAI diversity was also linked to a greater likelihood of teams’ ideas being categorized as paradigm-challenging. Finally, the results support the use of crowdsourcing for measuring the paradigm-relatedness of design solutions. 
    more » « less
  4. null (Ed.)
    Abstract Neuroimaging and transcranial direct current stimulation (tDCS) research has revealed that generating novel ideas is associated with both reductions and increases in prefrontal cortex (PFC) activity, and engagement of posterior occipital cortex, among other regions. However, there is substantial variability in the robustness of these tDCS‐induced effects due to heterogeneous sample sizes, different creativity measures, and methodological diversity in the application of tDCS across laboratories. To address these shortcomings, we used twelve different montages within a standardized tDCS protocol to investigate how altering activity in frontotemporal and occipital cortex impacts creative thinking. Across four experiments, 246 participants generated either the common or an uncommon use for 60 object pictures while undergoing tDCS. Participants also completed a control short-term memory task. We applied active tDCS for 20 min at 1.5 mA through two 5 cm × 5 cm electrodes over left or right ventrolateral prefrontal (areas F7, F8) or occipital (areas O1, O2) cortex, concurrent bilateral stimulation of these regions across polarities, or sham stimulation. Cathodal stimulation of the left, but not right, ventrolateral PFC improved fluency in creative idea generation, but had no effects on originality, as approximated by measures of semantic distance. No effects were obtained for the control tasks. Concurrent bilateral stimulation of the ventrolateral PFC regardless of polarity direction, and excitatory stimulation of occipital cortex did not alter task performance. Highlighting the importance of cross-experimental methodological consistency, these results extend our past findings and contribute to our understanding of the role of left PFC in creative thinking. 
    more » « less
  5. This study aims to investigate the development of creativity in engineering education and how spatial skills relate to creativity of design solutions. Undergraduate students in the first (n=86) and fourth/fifth year (n=48) of their engineering programme were invited to participate. Students completed four spatial tests to precisely measure visualisation skills. In a separate session, students were invited back to solve two engineering design tasks: a ping pong problem where they designed a ping pong ball launcher game to meet specified criteria and a rain catcher problem where they were tasked with developing as many ideas for capturing rainwater as a water source for a remote location as they could. Students were asked not to consider feasibility, cost, etc. and to come up multiple radical solutions to the rainwater capture problem. The creativity of design solutions was assessed using Adaptive Comparative Judgement. Statistical analysis indicated significant relationships between spatial skills, students’ year of study and gender. A statistically significant relationship was also found between students’ creativity scores on both design challenges. No statistical differences were determined in the creativity of first and fourth/fifth year students’ solutions. These findings will be discussed relative to existing research, future work, and potential implications for education practice. 
    more » « less