skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Construction of Differentially Private Empirical Distributions from a Low-Order Marginals Set Through Solving Linear Equations with ๐‘™2 Regularization
We introduce a new algorithm, Construction of dIfferentially Private Empirical Distributions from a low-order marginal set tHrough solving linear Equations with ๐‘™2 Regularization (CIPHER), that produces differentially private empirical joint distributions from a set of low-order marginals. CIPHER is conceptually simple and requires no more than decomposing joint probabilities via basic probability rules to construct a linear equation set and subsequently solve the equations. Compared to the full-dimensional histogram (FDH) sanitization, CIPHER has drastically lower requirements on computational storage and memory, which is practically attractive especially considering that the high-order signals preserved by the FDH sanitization are likely just sample randomness and rarely of interest. Our experiments demonstrate that CIPHER outperforms the multiplicative weighting exponential mechanism in preserving original information and has similar or superior cost-normalized utility to FDH sanitization at the same privacy budget.  more » « less
Award ID(s):
1717417 1546373
PAR ID:
10311803
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Intelligent Computing: Proceedings of the 2021 Computing Conference, Volume 3
Volume:
3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Linear sketches have been widely adopted to process fast data streams, and they can be used to accurately answer frequency estimation, approximate top K items, and summarize data distributions. When data are sensitive, it is desirable to provide privacy guarantees for linear sketches to preserve private information while delivering useful results with theoretical bounds. We show that linear sketches can ensure privacy and maintain their unique properties with a small amount of noise added at initialization. From the differentially private linear sketches, we showcase that the state-of-the-art quantile sketch in the turnstile model can also be private and maintain high performance. Experiments further demonstrate that our proposed differentially private sketches are quantitatively and qualitatively similar to noise-free sketches with high utilization on synthetic and real datasets. 
    more » « less
  2. Protection of individual privacy is a common concern when releasing and sharing data and information. Differential privacy (DP) formalizes privacy in probabilistic terms without making assumptions about the background knowledge of data intruders, and thus provides a robust concept for privacy protection. Practical applications of DP involve development of differentially private mechanisms to generate sanitized results at a pre-specified privacy budget. For the sanitization of statistics with publicly known bounds such as proportions and correlation coefficients, the bounding constraints will need to be incorporated in the differentially private mechanisms. There has been little work on examining the consequences of the bounding constraints on the accuracy of sanitized results and the statistical inferences of the population parameters based on the sanitized results. In this paper, we formalize the differentially private truncated and boundary inflated truncated (BIT) procedures for releasing statistics with publicly known bounding constraints. The impacts of the truncated and BIT Laplace procedures on the statistical accuracy and validity of sanitized statistics are evaluated both theoretically and empirically via simulation studies. 
    more » « less
  3. null (Ed.)
    We design differentially private algorithms for the bandit convex optimization problem in the projection-free setting. This setting is important whenever the decision set has a complex geometry, and access to it is done efficiently only through a linear optimization oracle, hence Euclidean projections are unavailable (e.g. matroid polytope, submodular base polytope). This is the first differentially-private algorithm for projection-free bandit optimization, and in fact our bound matches the best known non-private projection-free algorithm and the best known private algorithm, even for the weaker setting when projections are available. 
    more » « less
  4. null (Ed.)
    We design differentially private algorithms for the bandit convex optimization problem in the projection-free setting. This setting is important whenever the decision set has a complex geometry, and access to it is done efficiently only through a linear optimization oracle, hence Euclidean projections are unavailable (e.g. matroid polytope, submodular base polytope). This is the first differentially-private algorithm for projection-free bandit optimization, and in fact our bound matches the best known non-private projection-free algorithm (Garber-Kretzu, AISTATS '20) and the best known private algorithm, even for the weaker setting when projections are available (Smith-Thakurta, NeurIPS '13). 
    more » « less
  5. In this paper, we present a Renyi Differentially Private stochastic gradient descent (SGD) algorithm for convex empirical risk minimization. The algorithm uses output perturbation and leverages randomness inside SGD, which creates a โ€œrandomized sensitivityโ€, in order to reduce the amount of noise that is added. One of the benefits of output perturbation is that we can incorporate a periodic averaging step that serves to further reduce sensitivity while improving accuracy (reducing the well known oscillating behavior of SGD near the optimum). Renyi Differential Privacy can be used to provide (epsilon, delta)-differential privacy guarantees and hence provide a comparison with prior work. An empirical evaluation demonstrates that the proposed method outperforms prior methods on differentially private ERM. 
    more » « less