Understanding the characteristics of air-traffic delays and disruptions is critical for developing ways to mitigate their significant economic and environmental impacts. Conventional delay-performance metrics reflect only the magnitude of incurred flight delays at airports; in this work, we show that it is also important to characterize the spatial distribution of delays across a network of airports. We analyze graph-supported signals, leveraging techniques from spectral theory and graph-signal processing to compute analytical and simulation-driven bounds for identifying outliers in spatial distribution. We then apply these methods to the case of airport-delay networks and demonstrate the applicability of our methods by analyzing U.S. airport delays from 2008 through 2017. We also perform an airline-specific analysis, deriving insights into the delay dynamics of individual airline subnetworks. Through our analysis, we highlight key differences in delay dynamics between different types of disruptions, ranging from nor’easters and hurricanes to airport outages. We also examine delay interactions between airline subnetworks and the system-wide network and compile an inventory of outlier days that could guide future aviation operations and research. In doing so, we demonstrate how our approach can provide operational insights in an air-transportation setting. Our analysis provides a complementary metric to conventional aviation-delay benchmarks and aids airlines, traffic-flow managers, and transportation-system planners in quantifying off-nominal system performance.
more »
« less
Control and Optimization of Air Traffic Networks
The air transportation system connects the world through the transport of goods and people. However, operational inefficiencies such as flight delays and cancellations are prevalent, resulting in economic and environmental impacts. In the first part of this article, we review recent advances in using network analysis techniques to model the interdependencies observed in the air transportation system and to understand the role of airports in connecting populations, serving air traffic demand, and spreading delays. In the second part, we present some of our recent work on using operational data to build dynamical system models of air traffic delay networks. We show that Markov jump linear system models capture many of the salient characteristics of these networked systems. We illustrate how these models can be validated and then used to analyze system properties such as stability and to design optimal control strategies that limit the propagation of disruptions in air traffic networks.
more »
« less
- Award ID(s):
- 1739505
- PAR ID:
- 10311835
- Date Published:
- Journal Name:
- Annual Review of Control, Robotics, and Autonomous Systems
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2573-5144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Flight delays occur in the air transportation system when disruptive events such as weather, equipment outage, or congestion create an imbalance between system capacity and demand. These cycles of disruptions and subsequent recoveries can be viewed from a dynamical systems perspective: exogenous inputs (convective weather, airspace restrictions, etc.)disrupt the system, inducing delays and inefficiencies from which the system eventually recovers. We study these disruption and recovery cycles through a state-space representation that captures the severity and spatial impact of airport delays. In particular, using US airport delay data from 2008-2017, we first identify representative disruption and recovery cycles. These representative cycles provide insights into the common operational patterns of disruptions and recoveries in the system. We also relate these representative cycles to specific off-nominal events such as airport outages, and elucidate the differing disruption-recovery pathways for various off-nominal events. Finally, we explore temporal trends in terms of when and how the system tends to be disrupted, and the subsequent recovery.more » « less
-
Daduna, J R; Liedtke, G; Shi, X; Voss, S (Ed.)The transportation industry is a vital component of the global economy, responsible for the movement of goods between different locations. The intermodal freight transportation system involves the use of different modes of transportation, such as trucks, trains, and ships, to move freight containers. However, this system is loaded with inefficiencies due to the poor availability of real-time coordination and disruptions, causing delays, increased costs, and thus, higher carbon emissions. AI has the potential to improve the intermodal freight transportation system's efficiency by optimizing operations in real-time and self-evolving the models to make better/faster decisions. While both policymaking and business operations would benefit from using real-time optimization models, the implications and applications of these models are different in each context. In policymaking, real-time optimization models are used to improve public services, reduce overall network costs, and setting regulations for sustainable management of the network. The system can consider real-time traffic conditions, weather, and other factors to optimize the routing of the trucks, reducing transportation costs, improving delivery times, maintaining resiliency, and managing emissions. This work aims to contribute with a better understanding on how these information systems can be protected from cyberthreats, while performing the optimization of freight synchromodal transportation operations in real-time in terms of efficiency, cost-effectiveness, and carbon emissions reduction, considering the dynamic nature and heterogeneity of the intermodal freight system.more » « less
-
The significance of critical infrastructure systems in maintaining productivity is undeniable. However, such systems remain susceptible to external disturbances and cascading failures. Instead of operating independently, these physical systems, such as transportation and stormwater systems, form an interdependent system. This interdependence, particularly important during flooding, illustrates that the failure of a stormwater system can disrupt traffic networks. To explore the extent of such interdependency, this study investigates the transportation and stormwater networks in Norman, Oklahoma. Using network science theories and concepts of multilayered networks, this paper analyzes these systems, both individually and in combination. The study identifies closely located components in the road and stormwater networks using Moran's I spatial autocorrelation metric. Next, the connectivity of these networks is represented in a graph format to investigate the topological credentials (i.e., rank of relative importance) of the network components (i.e., water inlets, road intersections as nodes, and stormwater conduits, road segments as links). Moreover, such credentials further change by considering the weights of the network components (i.e., average daily traffic, water flow). The proximity-based connectivity considerations between these networks utilizing Moran's I significance score revealed a good indicator of spatial interdependency. When incorporating directionality, the multilayer network analysis highlights that highly central components tend to cluster spatially, unlike the undirected counterpart. The study also identifies vulnerable locations and network components in a combined network setting that differ from the networks in isolation. In doing so, the research reveals new insights governing the complex reliance of transportation systems on neighboring stormwater systems.more » « less
-
Machine learning (ML) methods, particularly Reinforcement Learning (RL), have gained widespread attention for optimizing traffic signal control in intelligent transportation systems. However, existing ML approaches often exhibit limitations in scalability and adaptability, particularly within large traffic networks. This paper introduces an innovative solution by integrating decentralized graph-based multi-agent reinforcement learning (DGMARL) with a Digital Twin to enhance traffic signal optimization, targeting the reduction of traffic congestion and network-wide fuel consumption associated with vehicle stops and stop delays. In this approach, DGMARL agents are employed to learn traffic state patterns and make informed decisions regarding traffic signal control. The integration with a Digital Twin module further facilitates this process by simulating and replicating the real-time asymmetric traffic behaviors of a complex traffic network. The evaluation of this proposed methodology utilized PTV-Vissim, a traffic simulation software, which also serves as the simulation engine for the Digital Twin. The study focused on the Martin Luther King (MLK) Smart Corridor in Chattanooga, Tennessee, USA, by considering symmetric and asymmetric road layouts and traffic conditions. Comparative analysis against an actuated signal control baseline approach revealed significant improvements. Experiment results demonstrate a remarkable 55.38% reduction in Eco_PI, a developed performance measure capturing the cumulative impact of stops and penalized stop delays on fuel consumption, over a 24 h scenario. In a PM-peak-hour scenario, the average reduction in Eco_PI reached 38.94%, indicating the substantial improvement achieved in optimizing traffic flow and reducing fuel consumption during high-demand periods. These findings underscore the effectiveness of the integrated DGMARL and Digital Twin approach in optimizing traffic signals, contributing to a more sustainable and efficient traffic management system.more » « less
An official website of the United States government

