skip to main content

Title: Trends in Haptic Communication of Human-Human Dyads: Toward Natural Human-Robot Co-manipulation
In this paper, we analyze and report on observable trends in human-human dyads performing collaborative manipulation (co-manipulation) tasks with an extended object (object with significant length). We present a detailed analysis relating trends in interaction forces and torques with other metrics and propose that these trends could provide a way of improving communication and efficiency for human-robot dyads. We find that the motion of the co-manipulated object has a measurable oscillatory component. We confirm that haptic feedback alone represents a sufficient communication channel for co-manipulation tasks, however we find that the loss of visual and auditory channels has a significant effect on interaction torque and velocity. The main objective of this paper is to lay the essential groundwork in defining principles of co-manipulation between human dyads. We propose that these principles could enable effective and intuitive human-robot collaborative manipulation in future co-manipulation research.
; ;
Award ID(s):
Publication Date:
Journal Name:
Frontiers in Neurorobotics
Sponsoring Org:
National Science Foundation
More Like this
  1. The utility of collaborative manipulators for shared tasks is highly dependent on the speed and accuracy of communication between the human and the robot. The run-time of recently developed probabilistic inference models for situated symbol grounding of natural language instructions depends on the complexity of the representation of the environment in which they reason. As we move towards more complex bi-directional interactions, tasks, and environments, we need intelligent perception models that can selectively infer precise pose, semantics, and affordances of the objects when inferring exhaustively detailed world models is inefficient and prohibits real-time interaction with these robots. In this paper we propose a model of language and perception for the problem of adapting the configuration of the robot perception pipeline for tasks where constructing exhaustively detailed models of the environment is inefficient and in- consequential for symbol grounding. We present experimental results from a synthetic corpus of natural language instructions for robot manipulation in example environments. The results demonstrate that by adapting perception we get significant gains in terms of run-time for perception and situated symbol grounding of the language instructions without a loss in the accuracy of the latter.
  2. Abstract Background

    Human-human (HH) interaction mediated by machines (e.g., robots or passive sensorized devices), which we call human-machine-human (HMH) interaction, has been studied with increasing interest in the last decade. The use of machines allows the implementation of different forms of audiovisual and/or physical interaction in dyadic tasks. HMH interaction between two partners can improve the dyad’s ability to accomplish a joint motor task (task performance) beyond either partner’s ability to perform the task solo. It can also be used to more efficiently train an individual to improve their solo task performance (individual motor learning). We review recent research on the impact of HMH interaction on task performance and individual motor learning in the context of motor control and rehabilitation, and we propose future research directions in this area.


    A systematic search was performed on the Scopus, IEEE Xplore, and PubMed databases. The search query was designed to find studies that involve HMH interaction in motor control and rehabilitation settings. Studies that do not investigate the effect of changing the interaction conditions were filtered out. Thirty-one studies met our inclusion criteria and were used in the qualitative synthesis.


    Studies are analyzed based on their results related to the effects of interactionmore »type (e.g., audiovisual communication and/or physical interaction), interaction mode (collaborative, cooperative, co-active, and competitive), and partner characteristics. Visuo-physical interaction generally results in better dyadic task performance than visual interaction alone. In cases where the physical interaction between humans is described by a spring, there are conflicting results as to the effect of the stiffness of the spring. In terms of partner characteristics, having a more skilled partner improves dyadic task performance more than having a less skilled partner. However, conflicting results were observed in terms of individual motor learning.


    Although it is difficult to draw clear conclusions as to which interaction type, mode, or partner characteristic may lead to optimal task performance or individual motor learning, these results show the possibility for improved outcomes through HMH interaction. Future work that focuses on selecting the optimal personalized interaction conditions and exploring their impact on rehabilitation settings may facilitate the transition of HMH training protocols to clinical implementations.

    « less
  3. A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core componentsmore »of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems.« less
  4. Wagner, A.R. (Ed.)
    Collaborative robots that provide anticipatory assistance are able to help people complete tasks more quickly. As anticipatory assistance is provided before help is explicitly requested, there is a chance that this action itself will influence the person’s future decisions in the task. In this work, we investigate whether a robot’s anticipatory assistance can drive people to make choices different from those they would otherwise make. Such a study requires measuring intent, which itself could modify intent, resulting in an observer paradox. To combat this, we carefully designed an experiment to avoid this effect. We considered several mitigations such as the careful choice of which human behavioral signals we use to measure intent and designing unobtrusive ways to obtain these signals. We conducted a user study (𝑁=99) in which participants completed a collaborative object retrieval task: users selected an object and a robot arm retrieved it for them. The robot predicted the user’s object selection from eye gaze in advance of their explicit selection, and then provided either collaborative anticipation (moving toward the predicted object), adversarial anticipation (moving away from the predicted object), or no anticipation (no movement, control condition). We found trends and participant comments suggesting people’s decision making changesmore »in the presence of a robot anticipatory motion and this change differs depending on the robot’s anticipation strategy.« less
  5. Collaborative robots provide prospective and great solutions to human–robot cooperative tasks. In this paper, we present a comprehensive review for two significant topics in human–robot interaction: robots learning from demonstrations and human comfort. The collaboration quality between the human and the robot has been improved largely by taking advantage of robots learning from demonstrations. Human teaching and robot learning approaches with their corresponding applications are investigated in this review. We also discuss several important issues that need to be paid attention to and addressed in the human–robot teaching–learning process. After that, the factors that may affect human comfort in human–robot interaction are described and discussed. Moreover, the measures utilized to improve human acceptance of robots and human comfort in human–robot interaction are also presented and discussed.