skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-platform simulations facilitate interdisciplinary instruction in undergraduate neuroscience
Herein, we describe the implementation of virtual labs that simulate central nervous system functions. The virtual labs use Jupyter Notebooks as a method of distribution. The underlying physiology is implemented using NEURON [8]. Python is used to implement interactive portions of the code without the need to know how to write code. Together, these tools provide a method for engaging students in inquiry-based exploration of neuroscience processes. Additionally, we report that computational tools have potential to engage students and promote inclusion in the research community similarly to students who have a traditional laboratory experience.  more » « less
Award ID(s):
1730655
PAR ID:
10311932
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 10th International IEEE/EMBS Conference on Neural Engineering (NER)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Computer labs are commonly used in computing education to help students reinforce the knowledge obtained in classrooms and to gain hands-on experience on specific learning subjects. While traditional computer labs are based on physical computer centers on campus, more and more virtual computer lab systems (see, e.g., [1, 2, 3, 4]) have been developed that allow students to carry out labs on virtualized resources remotely through the internet. Virtual computer labs make it possible for students to use their own computers at home, instead of relying on computer centers on campus to work on lab assignments. However, they also make it difficult for students to collaborate, due to the fact that students work remotely and there is a lack of support of sharing and collaboration. This is in contrast to traditional computer labs where students naturally feel the presence of their peers in a physical lab room and can easily work together and help each other if needed. Funded by NSF’s Division of Undergraduate Education, this project develops a collaborative virtual computer lab (CVCL) environment to support collaborative learning in virtual computer labs. The CVCL environment leverages existing open source collaboration tools and desktop sharing technologies and adds new functions unique to virtual computer labs to make it easy for students to collaborate while working on computer labs remotely. It also implements several collaborative lab models to support different forms of collaboration in both formal and informal settings. We have developed the main functions of the CVCL environment and begun to use it in classes in the Computer Science (CS) department at Georgia State University. While the original project focuses on computer labs in its traditional sense, the issue of lack of collaboration applies to much broader learning settings where students work on tasks or assignments on computers, with or without being associated with a lab environment. Due to the high mobility of students in modern campuses and the fact that many learning activities are carried out over the Internet, computer-based learning increasingly happen in students’ personal spaces (e.g., homes, apartments), as opposed to public learning spaces (e.g., laboratories, libraries). In these personal spaces, it is difficult for students to get help from classmates or teaching assistants (TAs) when encountering problems. As a result, collaborative learning is difficult and rare. This is especially true for urban universities such as Georgia State University where a significant portion of students are part-time students and/or commute. To address this issue, we intend to broaden the concept of “virtual computer lab” to include general computer based learning happening in “virtual space,” which is any location where people can meet using networked digital devices [5]. Virtual space is recognized as an increasingly important part of “learning spaces” and asks for support from both the technology aspect and learning theory aspect [5]. Collaborative learning environments that support remote collaboration in virtual computer labs would fill an important need in this broader trend. 
    more » « less
  2. This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students. 
    more » « less
  3. In physical sciences and engineering research, the study of virtual labs (VL) has generally focused on case studies about their implementation into classrooms or engineering design process and elements. However, few (if any) studies have assessed the viability of using conventional course evaluation instruments (originally designed for traditional in-person classroom environments), to evaluate virtual lab classes. This article presents a preliminary set of results from a study that examines and compares engineering undergraduate students’ evaluations of a capstone mechanical and aerospace engineering laboratory course taught in two different environments: in-person and remotely (virtual/online environment). The instrument used in both cases was the conventional course evaluation instrument that was quantitative and designed using a Likert scale. The aim of this study is to understand how this instrument captures or does not capture the students’ perceptions of their learning of course content in virtual and in-person learning environments. The second aim of this study is to explore students’ perceptions of the effectiveness and acceptance of virtual learning tools and environments applied in engineering laboratory classes. A total of 226 undergraduate students participated in this convergent mixed method study within a mechanical and aerospace engineering department at a research-1 institute in the northeastern region of the United States. Our initial analyses of the students’ course evaluations indicate that there were no statistically significant differences in the perceived teaching effectiveness of the course. However, statistically significant differences were found between the course final grades between students who participated in the in-person lab juxtapose to those who engaged in the virtual laboratory environment. In addition, qualitative results suggest that students’ perceptions of the value of in-person and virtual labs vary depending on prior engineering experiences. These results suggest that there is room for improvement in conventional course evaluation instruments of senior capstone engineering education laboratories that take place either in-person or virtually. 
    more » « less
  4. This Innovative Practice Work-In-Progress paper presents a collaborative virtual computer lab (CVCL) environment to support collaborative learning in cloud-based virtual computer labs. With advances of cloud computing and virtualization technologies, a new paradigm of virtual computer labs has emerged, where students carry out labs on virtualized resources remotely through the Internet. Virtual computer labs bring advantages, such as anywhere, anytime, on-demand access of specialized software and hardware. However, with current implementations, it also makes it difficult for students to collaborate, due to the fact that students are assigned separated virtual working spaces in a remote-accessing environment and there is a lack of support for sharing and collaboration. To address this issue, we develop a CVCL environment that allows students to reserve virtual computers labs with multiple participants and support remote real-time collaboration among the participants during a lab. The CVCL environment will implement several well-defined collaborative lab models, including shared remote collaboration, virtual study room, and virtual tutoring center. This paper describes the overall architecture and main features of the CVCL environment and shows preliminary results. 
    more » « less
  5. Recent innovations in virtual and mixed-reality (VR/MR) technologies have enabled innovative hands-on training applications in high-risk/high-value fields such as medicine, flight, and worker-safety. Here, we present a detailed description of a novel VR/MR tactile user interactions/interface (TUI) hardware and software development framework that enables the rapid and cost-effective no-code development, optimization, and distribution of fully authentic hands-on VR/MR laboratory training experiences in the physical and life sciences. We applied our framework to the development and optimization of an introductory pipette calibration activity that is often carried out in real chemistry and biochemistry labs. Our approach provides users with nuanced real-time feedback on both their psychomotor skills during data acquisition and their attention to detail when conducting data analysis procedures. The cost-effectiveness of our approach relative to traditional face-to-face science labs improves access to quality hands-on science lab experiences. Importantly, the no-code nature of this Hands-On Virtual-Reality (HOVR) Lab platform enables faculties to iteratively optimize VR/MR experiences to meet their student’s targeted needs without costly software development cycles. Our platform also accommodates TUIs using either standard virtual-reality controllers (VR TUI mode) or fully functional hand-held physical lab tools (MR TUI mode). In the latter case, physical lab tools are strategically retrofitted with optical tracking markers to enable tactile, experimental, and analytical authenticity scientific experimentation. Preliminary user study data highlights the strengths and weaknesses of our generalized approach regarding student affective and cognitive student learning outcomes. 
    more » « less