skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Domain-specific Topic Model for Knowledge Discovery through Conversational Agents in Data Intensive Scientific Communities
Machine learning techniques underlying Big Data analytics have the potential to benefit data intensive communities in e.g., bioinformatics and neuroscience domain sciences. Today’s innovative advances in these domain communities are increasingly built upon multi-disciplinary knowledge discovery and cross-domain collaborations. Consequently, shortened time to knowledge discovery is a challenge when investigating new methods, developing new tools, or integrating datasets. The challenge for a domain scientist particularly lies in the actions to obtain guidance through query of massive information from diverse text corpus comprising of a wide-ranging set of topics. In this paper, we propose a novel “domain-specific topic model” (DSTM) that can drive conversational agents for users to discover latent knowledge patterns about relationships among research topics, tools and datasets from exemplar scientific domains. The goal of DSTM is to perform data mining to obtain meaningful guidance via a chatbot for domain scientists to choose the relevant tools or datasets pertinent to solving a computational and data intensive research problem at hand. Our DSTM is a Bayesian hierarchical model that extends the Latent Dirichlet Allocation (LDA) model and uses a Markov chain Monte Carlo algorithm to infer latent patterns within a specific domain in an unsupervised manner. We apply our DSTM to large collections of data from bioinformatics and neuroscience domains that include hundreds of papers from reputed journal archives, hundreds of tools and datasets. Through evaluation experiments with a perplexity metric, we show that our model has better generalization performance within a domain for discovering highly specific latent topics.  more » « less
Award ID(s):
1730655
PAR ID:
10311946
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE International Workshop on Conversational Agents and Chatbots with Machine Learning (ChatbotML), in conjunction with IEEE Big Data
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scientists in disciplines such as neuroscience and bioinformatics are increasingly relying on science gateways for experimentation on voluminous data, as well as analysis and visualization in multiple perspectives. Though current science gateways provide easy access to computing resources, datasets and tools specific to the disciplines, scientists often use slow and tedious manual efforts to perform knowledge discovery to accomplish their research/education tasks. Recommender systems can provide expert guidance and can help them to navigate and discover relevant publications, tools, data sets, or even automate cloud resource configurations suitable for a given scientific task. To realize the potential of integration of recommenders in science gateways in order to spur research productivity,we present a novel “OnTimeRecommend" recommender system. The OnTimeRecommend comprises of several integrated recommender modules implemented as microservices that can be augmented to a science gateway in the form of a recommender-as-a-service. The guidance for use of the recommender modules in a science gateway is aided by a chatbot plug-in viz., Vidura Advisor. To validate our OnTimeRecommend, we integrate and show benefits for both novice and expert users in domain-specific knowledge discovery within two exemplar science gateways, one in neuroscience (CyNeuro) and the other in bioinformatics (KBCommons). 
    more » « less
  2. Neuroscientists are increasingly relying on high performance/throughput computing resources for experimentation on voluminous data, analysis and visualization at multiple neural levels. Though current science gateways provide access to computing resources, datasets and tools specific to the disciplines, neuroscientists require guided knowledge discovery at various levels to accomplish their research/education tasks. The guidance can help them to navigate them through relevant publications, tools, topic associations and cloud platform options as they accomplish important research and education activities. To address this need and to spur research productivity and rapid learning platform development, we present “OnTimeRecommend”, a novel recommender system that comprises of several integrated recommender modules through RESTful web services. We detail a neuroscience use case in a CyNeuro science gateway, and show how the OnTimeRecommend design can enable novice/expert user interfaces, as well as template-driven control of heterogeneous cloud resources. 
    more » « less
  3. Complex causal networks underlie many real-world problems, from the regulatory interactions between genes to the environmental patterns used to understand climate change. Computational methods seek to infer these causal networks using observational data and domain knowledge. In this paper, we identify three key requirements for inferring the structure of causal networks for scientific discovery: (1) robustness to noise in observed measurements; (2) scalability to handle hundreds of variables; and (3) flexibility to encode domain knowledge and other structural constraints. We first formalize the problem of joint probabilistic causal structure discovery.  We develop an approach using probabilistic soft logic (PSL) that exploits multiple statistical tests, supports efficient optimization over hundreds of variables, and can easily incorporate structural constraints, including imperfect domain knowledge. We compare our method against multiple well-studied approaches on biological and synthetic datasets, showing improvements of up to 20% in F1-score over the best performing baseline in realistic settings. 
    more » « less
  4. Proceedings of the Sixteenth (Ed.)
    Instead of mining coherent topics from a given text corpus in a completely unsupervised manner, seed-guided topic discovery methods leverage user-provided seed words to extract distinctive and coherent topics so that the mined topics can better cater to the user’s interest. To model the semantic correlation between words and seeds for discovering topic-indicative terms, existing seedguided approaches utilize different types of context signals, such as document-level word co-occurrences, sliding window-based local contexts, and generic linguistic knowledge brought by pre-trained language models. In this work, we analyze and show empirically that each type of context information has its value and limitation in modeling word semantics under seed guidance, but combining three types of contexts (i.e., word embeddings learned from local contexts, pre-trained language model representations obtained from general-domain training, and topic-indicative sentences retrieved based on seed information) allows them to complement each other for discovering quality topics. We propose an iterative framework, SeedTopicMine, which jointly learns from the three types of contexts and gradually fuses their context signals via an ensemble ranking process. Under various sets of seeds and on multiple datasets, SeedTopicMine consistently yields more coherent and accurate topics than existing seed-guided topic discovery approaches. 
    more » « less
  5. Classifying whether collected information related to emerging topics and domains is fake/incorrect is not an easy task because we do not have enough labeled data in the domains. Given labeled data from source domains (e.g., gossip and health) and limited labeled data from a newly emerging target domain (e.g., COVID-19 and Ukraine war), simply applying knowledge learned from source domains to the target domain may not work well because of different data distribution. To solve the problem, in this paper, we propose an energy-based domain adaptation with active learning for early misinformation detection. Given three real world news datasets, we evaluate our proposed model against two baselines in both domain adaptation and the whole pipeline. Our model outperforms the baselines, improving at least 5% in the domain adaptation task and 10% in the whole pipeline, showing effectiveness of our proposed approach. 
    more » « less