Radio-frequency sensing and communication systems which use a waveform for more than one function offer the promise of improved spectral efficiency and streamlined hardware requirements. Control of orbital angular momentum (OAM) may be used to increase data-rates and improve radar sensitivity to certain chiral targets. This paper presents finite-difference time-domain simulations which model a gigahertz-frequency OAM radar capable of transmitting information via OAM-mode modulation. The unique chirality-detection capability of OAM radar is demonstrated, as well as simple information transmission. Simulation scope and radar specifications are designed with an eye toward developing a dual function ground penetrating radar (GPR) with OAM mode control.
more »
« less
Ultra-wideband ground penetrating radar with orbital angular momentum control
Ultra-wideband (UWB) ground penetrating radar (GPR) is an effective, widely used tool for detection and mapping of buried targets. However, traditional ground penetrating radar systems struggle to resolve and identify congested target configurations and irregularly shaped targets. This is a significant limitation for many municipalities who seek to use GPR to locate and image underground utility pipes. This research investigates the implementation of orbital angular momentum (OAM) control in an UWB GPR, with the goal of addressing these limitations. Control of OAM is a novel technique which leverages an additional degree of freedom offered by spatially structured helical waveforms. This paper examines several free-space and buried target configurations to determine the ability of helical OAM waveforms to improve detectability and distinguishability of buried objects including those with symmetric, asymmetric, and chiral geometries. Microwave OAM can be generated using a uniform circular array (UCA) of antennas with phase delays applied according to azimuth angle. Here, a four-channel network analyzer transceiver is connected to a UCA to enable UWB capability. The characteristic phase delays of OAM waveforms are implemented synthetically via signal processing. The viability demonstrated with the method opens design and analysis degrees of freedom for penetrating radar that may help with discerning challenging targets, such as buried landmines and wires.
more »
« less
- Award ID(s):
- 1647095
- PAR ID:
- 10311961
- Editor(s):
- Isaacs, Jason C.; Bishop, Steven S.
- Date Published:
- Journal Name:
- SPIE Defense + Commercial Sensing: Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXVI
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper explores using Orbital Angular Momentum (OAM) controlled electromagnetic waves for enhanced ground penetrating radar (GPR) imaging and detection. A macroscopic interpretation of OAM is propagating waves with vortex-shaped wave fronts. At the photon level OAM appears as a quantum degree of freedom with integer quanta of angular momentum added to each photon. This is in addition to Spin Angular Momentum (SAM). The use of OAM in GPR has at least two potential advantages. The vortex shape may enable better discernment of cylindrical versus non-cylindrical buried objects. At the quantum level entanglement of OAM with other quantum degrees of freedom may enable enhanced imaging, such as the ghost imaging of objects that produce weak signal returns. The results include experiments that demonstrate the generation and reception of EM waves with a circular pattern of antennas operating as phased arrays to produce vortex-shaped waves at frequencies and dimensions typical of conventional GPRs.more » « less
-
Ground penetrating radar (GPR) is a remote geophysical sensing method that has been applied in the localization of underground utilities, bridge deck survey, localization of landmines, mapping of terrain for aid in driverless cars, etc. Multistatic GPR can deliver a faster survey, wider spatial coverage, and multiple viewpoints of the subsurface. However, because of the transmit and receive antennas spatial offset, formation of 3D GPR image by simple stacking of the acquired A-scans is inaccurate. Also, averaging of different receivers data may lead to destructive interference of back-scattered waves due to different time delays implied by the spatial offset, so averaging does not lead to higher SNR in general. Furthermore, the energy back-scattered by scatter points are spread in hyperbolas in the GPR raw data. Migration or imaging algorithms are employed to increase SNR by focusing the hyperbolas. This focusing process also leads to better accuracy in target localization. In this paper, a computationally efficient synthetic aperture radar (SAR) imaging algorithm that properly integrates multistatic GPR data in both ground and air-coupled cases is presented. The algorithm is successfully applied on two synthetic datasets.more » « less
-
This paper presents results from a series of measurements aimed at mapping, assessing and monitoring underground infrastructure, i.e. the water, sewer, gas, electricity, telecommunications and other supply lines that are vital to modern society. Most of this infrastructure is buried out of sight, in uncertain and highly congested locations and in an aging condition. Mapping, assessing and monitoring this infrastructure can lead to significant improvements in management, repair and growth practices. The sensors include multi-band and multi-static ground penetrating radar (GPR), and underground flow and condition sensing of water systems, including acoustic leak detection, linked by wireless and high-speed fiber-optic networks. Ground penetrating radar is one method available for locating underground utilities, but becomes challenging in urban environments due to the congestion of piping and difficulties with GPS-denied position registration. Ongoing efforts to overcome these challenges with advanced GPR techniques and the integration into a mapping database are presented, including results from field tests with pre and post construction ground truth evaluations. Data telemetry from buried infrastructure for IOT-type monitoring is hampered by the high-attenuation rate for wireless electromagnetic transmission. Results from experiments aimed at low-speed magnetic signaling with potential for high penetration through soils are presented.more » « less
-
Raynal, Ann M.; Ranney, Kenneth I. (Ed.)Control of orbital angular momentum (OAM) offers the potential for increases in control, sensitivity, and security for high-performance microwave systems. OAM is characterized by an integer OAM mode where zero represents the case of a plane wave. Microwaves with a nonzero OAM mode propagate with a helical wavefront. Orthogonal OAM modes can be used to carry distinct information at the same frequency and polarization, increasing the data rate. The OAM waveform may also increase radar detection capability for certain shaped objects. OAM can be induced by broadcasting a plane wave through a spatial phase plate (SPP) dielectric which introduces an azimuthally dependent phase delay. However, SPPs are frequency-specific, which presents an obstacle for harnessing OAM in frequency-modulated communication systems and wide-bandwidth radar. In this study, we develop a circular phased array to synthesize the desired vortex-shaped wavefront. This approach offers a critical advantage: the phases of all antenna elements are easily programmable under different frequencies. As a result, transmission and reception of the OAM beam can be controlled with great flexibility, making it operable over a wide frequency spectrum, which leverages OAM radar functionality and performance. In this paper, we will investigate a wide-bandwidth radar with OAM mode-control and signal processing.more » « less