skip to main content


Title: Toward Net-Zero Energy Retrofitting: Building-Integrated Photovoltaic Curtainwalls
With the rapid urbanization and growing energy use intensity in the built environment, the glazed curtainwall has become ever more important in the architectural practice and environmental stewardship. Besides its energy efficiency roles, window has been an important transparent component for daylight penetration and a view-out for occupant satisfaction. In response to the climate crisis caused by the built environment, this research focuses on the study of net-zero energy retrofitting by using a new building integrated photovoltaic (BIPV) curtainwall as a sustainable alternative to conventional window systems. Design variables such as building orientations, climate zones, energy attributes of BIPV curtainwalls, and glazed area were studied, to minimize energy consumption and discomfort hours for three cities representing hot (Miami, FL), mixed (Charlotte, NC), and cold (Minneapolis, MN). Parametric analysis and Pareto solutions are presented to provide a comprehensive explanation of the correlation between design variables and performance objectives for net-zero energy retrofitting applications.  more » « less
Award ID(s):
2037631
NSF-PAR ID:
10311999
Author(s) / Creator(s):
Date Published:
Journal Name:
International journal of highrise buildings
Volume:
10
Issue:
1
ISSN:
2288-9930
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Building facades are components that shape a structure’s daylighting, energy use, and view factors. This paper presents an approach that enables designers to understand the impact that different facade designs will have over time and space in the built environment through a BIM-enabled augmented reality system. The system permits the examination of a range of facade retrofit scenarios and visualizes the daylighting simulations and aesthetics of a structure while retaining function and comfort. A focus of our study was to measure how participants make decisions within the multiobjective decision space designers often face when buildings undergo retrofitting. This process often requires designers to search for a set of alternatives that represent the optimal solution. We analyze the decision-making process of forty-four subjects to determine how they explore design choices. Our results indicate the feasibility of using BIM-enabled AR to improve how designers make informed decisions. 
    more » « less
  2. The rooftop is a default location for photovoltaic solar panels and is often not enough to offset increasing building energy consumption. The vertical surface of urban buildings offers a prime location to harness solar energy. The overall goal of this research is to evaluate power production potentials and multi-functionalities of a 3D building integrated photovoltaic (BIPV) facade system. The traditional BIPV which is laminated with window glass obscures the view-out and limits daylight penetration. Unlike the traditional system, the 3D solar module was configured to reflect the sun path geometry to maximize year-round solar exposure and energy production. In addition, the 3D BIPV façade offers multiple functionalities – solar regulations, daylighting penetration, and view-out, resulting in energy savings from heating, cooling, and artificial lighting load. Its ability to produce solar energy offsets building energy consumption and contributes to net-zero-energy buildings. Both solar simulations and physical prototyping were carried out to investigate the promises and challenges of the 3D BIPV façade system compared to a traditional BIPV system. With climate emergency on the rise and the need for clean, sustainable energy becoming ever more pressing, the 3D BIPV façade in this paper offers a creative approach to tackling the problems of power production, building energy savings, and user health and wellbeing. 
    more » « less
  3. This paper investigates the decision-making outcomes and cognitive-physical load implications of integrating a Building Information Modeling-driven Augmented Reality (AR) system into retrofitting design and how movement is best leveraged to understand daylighting impacts. We conducted a study with 128 non-expert participants, who were asked to choose a window facade to improve an interior space. We found no significant difference in the overall decision-making outcome between those who used an AR tool or a conventional desktop approach and that greater eye movement in AR was related to non-experts better balancing the complicated impacts facades have on daylight, aesthetics, and energy. 
    more » « less
  4. The overwhelming consensus in the scientific community is that anthropogenic climate change will irreversibly affect future generations. Engineering professionals who design and construct our built environment can protect society against the effects of global warming through implementation of building strategies that reduce climate changing emissions. There is little research to assess if students who intend to pursue careers in the design and construction of our built environment hope to address such important environmental and societal challenges. To advance understanding, a survey instrument was developed and validated to measure undergraduate engineering students’ climate change literacy, career motivations, and agency to address climate change in their career. Preliminary results compare responses of engineering students intending to pursue a career in civil and construction industries to those of engineering students intending to pursue other engineering careers. The results indicate that civil and construction engineering students are more likely to take sustainability courses and learn about climate change in the classroom, but they do not excel above other engineers in their knowledge of climate science. The educational gap in engineering sustainability courses must be closed to ensure those who will design and construct our built environment are properly equipped to succeed in the sustainability-related careers they desire. 
    more » « less
  5. null (Ed.)
    Single-pane windows still account for a large percentage of US building energy consumption. In this paper, we introduced a new solution incorporating the photothermal effect of metallic nanoparticles(Fe3O4@Cu2−xS) into glazing structures to utilize solar infrared and then enhance the window’s thermal performance in winter. Such spectrally selective characteristics of the designed photothermal films were obtained from lab measurements and then integrated into a thermodynamic analytical model. Subsequently, we examined the thermal and optical behaviors of the photothermal single-pane window and compared its overall energy performance with the conventional low-e coated single-pane window, in which typical window properties, dimensions, winter boundary conditions, and solar irradiance were adopted. The numerical analysis results demonstrated that the photothermal window systems could yield 20.4% energy savings relative to the conventional low-e coated windows. This research paves an underlying thermodynamic mechanism for understanding such a nanoscale phenomenon at the architectural scale. From the implementation perspective, the designed photothermal film can be added into the existing single-pane windows for energy-efficient retrofitting purposes. 
    more » « less