skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changing hydroclimate dynamics and the 19th to 20th century wetting trend in the English Channel region of northwest Europe
Northwestern Europe has experienced a trend of increasingly wet winters over the past 150 years, with few explanations for what may have driven this hydroclimatic change. Here we use the Old World Drought Atlas (OWDA), a tree-ring based reconstruction of the self-calibrating Palmer Drought Severity Index (scPDSI), to examine this wetting trend and place it in a longer hydroclimatic context. We find that scPDSI variability in northwestern Europe is strongly correlated with the leading mode of the OWDA during the last millennium (1000–2012). This leading mode, here named the ‘English Channel’ (EC) mode, has pronounced variability on interannual to centennial timescales and has an expression in scPDSI similar to that of the East Atlantic teleconnection pattern. A shift in the EC mode from a prolonged negative phase to more neutral conditions during the 19th and 20th centuries is associated with the wetting trend over its area of influence in England, Wales, and much of northern continental Europe. The EC mode is the dominant scPDSI mode from approximately 1000–1850, after which its dominance waned in favor of the secondary ‘North–South’ (NS) mode, which has an expression in scPDSI similar to that of the winter North Atlantic Oscillation (NAO). We examine the dynamical nature of both of these modes and how they vary on interannual to centennial timescales. Our results provide insight into the nature of hydroclimate variability in Europe before the widespread availability of instrumental observations.  more » « less
Award ID(s):
1734760
PAR ID:
10312000
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate Dynamics
ISSN:
0930-7575
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections. 
    more » « less
  2. Abstract The European Great Famine of 1315–1317 triggered one of the worst population collapses in European history and ranks as the single worst European famine in mortality as a proportion of population. Historical records point to torrential rainfall, land saturation, crop failure, and prolonged flooding as important causes of the famine. Here we use the tree-ring based Old World Drought Atlas (OWDA) to show that the average of each growing season preceding the Great Famine years (1314–1316) was the fifth wettest over Europe from 1300 to 2012 C.E. The spatial and temporal characteristics of our OWDA-estimated anomalies are in excellent agreement with available historical accounts. We also characterize a mode of European hydroclimate variability that is associated with the Great Famine, which we term the “Great Famine mode.” This mode emerges as the leading mode of European hydroclimate variability from 1300–2012 and is strongly associated with extreme wet and dry events in Europe over the last millennium. 
    more » « less
  3. In recent years, a pair of large-scale circulation patterns consisting of an anomalous ridge over northwestern North America and trough over northeastern North America was found to accompany extreme winter weather events such as the 2013–2015 California drought and eastern U.S. cold outbreaks. Referred to as the North American winter dipole (NAWD), previous studies have found both a marked natural variability and a warming-induced amplification trend in the NAWD. In this study, we utilized multiple global reanalysis datasets and existing climate model simulations to examine the variability of the winter planetary wave patterns over North America and to better understand how it is likely to change in the future. We compared between pre- and post-1980 periods to identify changes to the circulation variations based on empirical analysis. It was found that the leading pattern of the winter planetary waves has changed, from the Pacific–North America (PNA) mode to a spatially shifted mode such as NAWD. Further, the potential influence of global warming on NAWD was examined using multiple climate model simulations. 
    more » « less
  4. The Adige River Basin (ARB) provides a vital water supply source for varying demands including agriculture (wine production), energy (hydropower) and municipal water supply. Given the importance of this river system, information about past (paleo) drought and pluvial (wet) periods would quantity risk to water managers and planners. Annual streamflow data were obtained for four gauges that were spatially located within the upper ARB. The Old World Drought Atlas (OWDA) provides an annual June–July–August (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) derived from 106 tree-ring chronologies for 5414 grid points across Europe from 0 to 2012 AD. In lieu of tree-ring chronologies, the OWDA dataset was used as a proxy to reconstruct both individual gauge and ARB regional streamflow from 0 to 2012. Principal component analysis (PCA) was applied to the four ARB streamflow gauges to generate one representative vector of regional streamflow. This regional streamflow vector was highly correlated with the four individual gauges, as coefficient of determination (R2) values ranged from 85% to 96%. Prescreening methods included correlating annual streamflow and scPDSI cells (within a 450 km radius) in which significant (p ≤ 0.01 or 99% significance) scPDSI cells were identified. The significant scPDSI cells were then evaluated for temporal stability to ensure practical and reliable reconstructions. Statistically significant and temporally stable scPDSI cells were used as predictors (independent variables) to reconstruct streamflow (predictand or dependent variable) for both individual gauges and at the regional scale. This resulted in highly skillful reconstructions of upper ARB streamflow from 0 to 2012 AD. Multiple drought and pluvial periods were identified in the paleo record that exceed those observed in the recent, historic record. Moreover, this study concurred with streamflow reconstructions in nearby European watersheds. 
    more » « less
  5. There are indications that the reference climatology underlying meteorological drought has shown nonstationarity at seasonal, decadal, and centennial timescales, impacting the calculation of drought indices and potentially having ecological and economic consequences. Analyzing these trends in meteorological drought climatology beyond 100 years, a time frame which exceeds the available period of observation data, contributes to a better understanding of the nonstationary changes, ultimately determining whether they are within the range of natural variability or outside this range. To accomplish this, our study introduces a novel approach to integrate unevenly scaled tree-ring proxy data from the North American Seasonal Precipitation Atlas (NASPA) with instrumental precipitation datasets by first temporally downscaling the proxy data to produce a regular time series and then modeling climate nonstationarity while simultaneously correcting model-induced bias. This new modeling approach was applied to 14 sites across the continental United States using the 3-month standardized precipitation index (SPI) as a basis. The findings showed that certain locations have experienced recent rapid shifts towards drier or wetter conditions during the instrumental period compared to the past 1000 years, with drying trends generally found in the west and wetting trends in the east. This study also found that seasonal shifts have occurred in some regions recently, with seasonality changes most notable for southern gauges. We expect that our new approach provides a foundation for incorporating various datasets to examine nonstationary variability in long-term precipitation climatology and to confirm the spatial patterns noted here in greater detail. 
    more » « less