skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dr. Top-k: Delegate-Centric Top-k on GPUs
Award ID(s):
2000722
PAR ID:
10312019
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The International Conference for High Performance Computing, Networking, Storage and Analysis (SC 21)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the past few decades, the IR community has been making a continuous effort to improve the efficiency of search in large collections of documents. Query processing is still one of the main bottlenecks in large-scale search systems. The top-k document retrieval problem, which can be defined as reporting the k most relevant documents from a collection for a given query, can be extremely expensive, as it involves scoring large amounts of documents. In this work, we investigate the top-k document retrieval problem from several angles with the aim of improving the efficiency of this task in large-scale search systems. Finally, we briefly describe our initial findings and conclude by proposing future directions to follow. 
    more » « less
  2. null (Ed.)
    Top-k queries have been studied intensively in the database community and they are an important means to reduce query cost when only the “best” or “most interesting” results are needed instead of the full output. While some optimality results exist, e.g., the famous Threshold Algorithm, they hold only in a fairly limited model of computation that does not account for the cost incurred by large intermediate results and hence is not aligned with typical database-optimizer cost models. On the other hand, the idea of avoiding large intermediate results is arguably the main goal of recent work on optimal join algorithms, which uses the standard RAM model of computation to determine algorithm complexity. This research has created a lot of excitement due to its promise of reducing the time complexity of join queries with cycles, but it has mostly focused on full-output computation. We argue that the two areas can and should be studied from a unified point of view in order to achieve optimality in the common model of computation for a very general class of top-k-style join queries. This tutorial has two main objectives. First, we will explore and contrast the main assumptions, concepts, and algorithmic achievements of the two research areas. Second, we will cover recent, as well as some older, approaches that emerged at the intersection to support efficient ranked enumeration of join-query results. These are related to classic work on k-shortest path algorithms and more general optimization problems, some of which dates back to the 1950s. We demonstrate that this line of research warrants renewed attention in the challenging context of ranked enumeration for general join queries. 
    more » « less
  3. Abstract We introduce theReverseSpatial Top-kKeyword (RSK)query, which is defined as:given a query term q, an integer k and a neighborhood size find all the neighborhoods of that size where q is in the top-k most frequent terms among the social posts in those neighborhoods. An obvious approach would be to partition the dataset with a uniform grid structure of a given cell size and identify the cells where this term is in the top-k most frequent keywords. However, this answer would be incomplete since it only checks for neighborhoods that are perfectly aligned with the grid. Furthermore, for every neighborhood (square) that is an answer, we can define infinitely more result neighborhoods by minimally shifting the square without including more posts in it. To address that, we need to identify contiguous regions where any point in the region can be the center of a neighborhood that satisfies the query. We propose an algorithm to efficiently answer an RSK query using an index structure consisting of a uniform grid augmented by materialized lists of term frequencies. We apply various optimizations that drastically improve query latency against baseline approaches. We also provide a theoretical model to choose the optimal cell size for the index to minimize query latency. We further examine a restricted version of the problem (RSKR) that limits the scope of the answer and propose efficientapproximatealgorithms. Finally, we examine how parallelism can improve performance by balancing the workload using a smartload slicingtechnique. Extensive experimental performance evaluation of the proposed methods using real Twitter datasets and crime report datasets, shows the efficiency of our optimizations and the accuracy of the proposed theoretical model. 
    more » « less
  4. Database queries are often used to select and rank items as decision support for many applications. As automated decision-making tools become more prevalent, there is a growing recognition of the need to diversify their outcomes. In this paper, we define and study the problem of modifying the selection conditions of an ORDER BY query so that the result of the modified query closely fits some user-defined notion of diversity while simultaneously maintaining the intent of the original query. We show the hardness of this problem and propose a mixed-integer linear programming (MILP) based solution. We further present optimizations designed to enhance the scalability and applicability of the solution in real-life scenarios. We investigate the performance characteristics of our algorithm and show its efficiency and the usefulness of our optimizations. 
    more » « less
  5. We study the top-k set similarity search problem using semantic overlap. While vanilla overlap requires exact matches between set elements, semantic overlap allows elements that are syntactically different but semantically related to increase the overlap. The semantic overlap is the maximum matching score of a bipartite graph, where an edge weight between two set elements is defined by a user-defined similarity function, e.g., cosine similarity between embeddings. Common techniques like token indexes fail for semantic search since similar elements may be unrelated at the character level. Further, verifying candidates is expensive (cubic versus linear for syntactic overlap), calling for highly selective filters. We propose Koios, the first exact and efficient algorithm for semantic overlap search. Koios leverages sophisticated filters to minimize the number of required graph-matching calculations. Our experiments show that for medium to large sets less than 5% of the candidate sets need verification, and more than half of those sets are further pruned without requiring the expensive graph matching. We show the efficiency of our algorithm on four real datasets and demonstrate the improved result quality of semantic over vanilla set similarity search. 
    more » « less