The Internet of Things (IoT) is revolutionizing society by connect- ing people and devices seamlessly and providing enhanced user experience and functionalities. However, the unique properties of IoT networks, such as heterogeneity and non-standardized protocol, have created critical security holes and network mismanagement. We propose a new measurement tool for IoT network data to aid in analyzing and classifying such network traffic. We use evidence from both security and machine learning research, which suggests that the complexity of a dataset can be used as a metric to determine the trustworthiness of data. We test the complexity of IoT networks using Intrinsic Dimensionality (ID), a theoretical complexity mea- surement based on the observation that a few variables can often describe high dimensional datasets. We use ID to evaluate four mod- ern IoT network datasets empirically, showing that, for network and device-level data generated using IoT methodologies, the ID of the data fits into a low dimensional representation; this makes such data amenable to the use of machine learning algorithms for anomaly detection. 
                        more » 
                        « less   
                    
                            
                            Network Traffic Characteristics of IoT Devices in Smart Homes
                        
                    
    
            Understanding network traffic characteristics of IoT devices plays a critical role in improving both the performance and security of IoT devices, including IoT device identification, classification, and anomaly detection. Although a number of existing research efforts have developed machine-learning based algorithms to help address the challenges in improving the security of IoT devices, none of them have provided detailed studies on the network traffic characteristics of IoT devices. In this paper we collect and analyze the network traffic generated in a typical smart homes environment consisting of a set of common IoT (and non-IoT) devices. We analyze the network traffic characteristics of IoT devices from three complementary aspects: remote network servers and port numbers that IoT devices connect to, flow-level traffic characteristics such as flow duration, and packet-level traffic characteristics such as packet inter-arrival time. Our study provides critical insights into the operational and behavioral characteristics of IoT devices, which can help develop more effective security and performance algorithms for IoT devices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1662487
- PAR ID:
- 10312067
- Date Published:
- Journal Name:
- 2021 International Conference on Computer Communications and Networks (ICCCN)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Internet of Things (IoT) is a connected network of devices that exchange data using different protocols. The application of IoT ranges from intelligent TVs and intelligent Refrigerators to smart Transportation. This research aims to provide students with hands-on training on how to develop an IoT platform that supports device management, connectivity, and data management. People tend to build interconnected devices without having a basic understanding of how the IoT platform backend function. Studying the Arm Pelion will help to understand how IoT devices operate under the hood. This past summer, Morgan State University has hosted undergraduate engineering students and high school STEM teachers to conduct IoT security research in the Cybersecurity Assurance & Policy (CAP) Center. The research project involved integrating various hardware sensor devices and real-time data monitoring using the Arm Pelion IoT development platform. Some of the student/teacher outcomes from the project include: 1) Learning about IoT Technology and security; 2) Programming an embedded system using Arm Mbed development board and IDE; 3 3) Developing a network of connected IoT devices using different protocols such as LWM2M, MQTT, CoAP; 4) Investigating the cybersecurity risks associated with the platform; and 5) Using data analysis and visualization to understand the network data and packet flow. First, the student/teacher must consider the IoT framework to understand how to address the security. The IoT framework describes the essential functions of an IoT network, breaking it down into separate layers. These layers include an application layer, middleware layer, and connectivity layer. The application layer allows the users to access the platform via a smartphone or any other dashboard. The Middleware layer represents the backend system that provides edge devices with data management, messaging, application services, and authentication. Finally, the connectivity layer includes devices that connect the user to the network, including Bluetooth or WiFi. The platform consists of several commercial IoT devices such as a smart camera, baby monitor, smart light, and other devices. We then create algorithms to classify the network data flow; to visualize the packets flow in the network and the structure of the packets data frame over time.more » « less
- 
            Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the wide deployments of Internet-of-things (IoT) in smart homes. As IoT devices often directly interact with the users and environments, this paper studies if and how we could explore the collective insights from multiple heterogeneous IoT devices to infer user activities for home safety monitoring and assisted living. Specifically, we develop a new system, namely IoTMosaic, to first profile diverse user activities with distinct IoT device event sequences, which are extracted from smart home network traffic based on their TCP/IP data packet signatures. Given the challenges of missing and out-of-order IoT device events due to device malfunctions or varying network and system latencies, IoTMosaic further develops simple yet effective approximate matching algorithms to identify user activities from real-world IoT network traffic. Our experimental results on thousands of user activities in the smart home environment over two months show that our proposed algorithms can infer different user activities from IoT network traffic in smart homes with the overall accuracy, precision, and recall of 0.99, 0.99, and 1.00, respectively.more » « less
- 
            The recent spate of cyber attacks towards Internet of Things (IoT) devices in smart homes calls for effective techniques to understand, characterize, and unveil IoT device activities. In this paper, we present a new system, named IoTAthena, to unveil IoT device activities from raw network traffic consisting of timestamped IP packets. IoTAthena characterizes each IoT device activity using an activity signature consisting of an ordered sequence of IP packets with inter-packet time intervals. IoTAthena has two novel polynomial time algorithms, sigMatch and actExtract. For any given signature, sigMatch can capture all matches of the signature in the raw network traffic. Using sigMatch as a subfunction, actExtract can accurately unveil the sequence of various IoT device activities from the raw network traffic. Using the network traffic of heterogeneous IoT devices collected at the router of a real-world smart home testbed and a public IoT dataset, we demonstrate that IoTAthena is able to characterize and generate activity signatures of IoT device activities and accurately unveil the sequence of IoT device activities from raw network traffic.more » « less
- 
            Over the years, honeypots emerged as an important security tool to understand attacker intent and deceive attackers to spend time and resources. Recently, honeypots are being deployed for Internet of things (IoT) devices to lure attackers, and learn their behavior. However, most of the existing IoT honeypots, even the high interaction ones, are easily detected by an attacker who can observe honeypot traffic due to lack of real network traffic originating from the honeypot. This implies that, to build better honeypots and enhance cyber deception capabilities, IoT honeypots need to generate realistic network traffic flows. To achieve this goal, we propose a novel deep learning based approach for generating traffic flows that mimic real network traffic due to user and IoT device interactions.A key technical challenge that our approach overcomes is scarcity of device-specific IoT traffic data to effectively train a generator.We address this challenge by leveraging a core generative adversarial learning algorithm for sequences along with domain specific knowledge common to IoT devices.Through an extensive experimental evaluation with 18 IoT devices, we demonstrate that the proposed synthetic IoT traffic generation tool significantly outperforms state of the art sequence and packet generators in remaining indistinguishable from real traffic even to an adaptive attacker.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    