skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Identification of Potential Host Plants of Sap-Sucking Insects (Hemiptera: Cicadellidae) Using Anchored Hybrid By-Catch Data
Reliable host plant records are available for only a small fraction of herbivorous insect species, despite their potential agricultural importance. Most available data on insect–plant associations have been obtained through field observations of occurrences of insects on particular plants. Molecular methods have more recently been used to identify potential host plants using DNA extracted from insects, but most prior studies using these methods have focused on chewing insects that ingest tissues expected to contain large quantities of plant DNA. Screening of Illumina data obtained from sap feeders of the hemipteran family Cicadellidae (leafhoppers) using anchored hybrid enrichment indicates that, despite feeding on plant fluids, these insects often contain detectable quantities of plant DNA. Although inclusion of probes for bacterial 16S in the original anchored hybrid probe kit yielded relatively high detection rates for chloroplast 16S, the Illumina short reads also, in some cases, included DNA for various plant barcode genes as “by-catch”. Detection rates were generally only slightly higher for Typhlocybinae, which feed preferentially on parenchyma cell contents, compared to other groups of leafhoppers that feed preferentially on phloem or xylem. These results indicate that next-generation sequencing provides a powerful tool to investigate the specific association between individual insect and plant species.  more » « less
Award ID(s):
1639601
PAR ID:
10312175
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Insects
Volume:
12
Issue:
11
ISSN:
2075-4450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phytoplasmas (Mollicutes,Acholeplasmataceae), vector‐borne obligate bacterial plant parasites, infect nearly 1,000 plant species and unknown numbers of insects, mainly leafhoppers (Hemiptera, Deltocephalinae), which play a key role in transmission and epidemiology. Although the plant–phytoplasma–insect association has been evolving for >300 million years, nearly all known phytoplasmas have been discovered as a result of the damage inflicted by phytoplasma diseases on crops. Few efforts have been made to study phytoplasmas occurring in noneconomically important plants in natural habitats. In this study, a subsample of leafhopper specimens preserved in a large museum biorepository was analyzed to unveil potential new associations. PCR screening for phytoplasmas performed on 227 phloem‐feeding leafhoppers collected worldwide from natural habitats revealed the presence of 6 different previously unknown phytoplasma strains. This indicates that museum collections of herbivorous insects represent a rich and largely untapped resource for discovery of new plant pathogens, that natural areas worldwide harbor a diverse but largely undiscovered diversity of phytoplasmas and potential insect vectors, and that independent epidemiological cycles occur in such habitats, posing a potential threat of disease spillover into agricultural systems. Larger‐scale future investigations will contribute to a better understanding of phytoplasma genetic diversity, insect host range, and insect‐borne phytoplasma transmission and provide an early warning for the emergence of new phytoplasma diseases across global agroecosystems.

     
    more » « less
  2. Phytoplasmas are obligate transkingdom bacterial parasites that infect a variety of plant species and replicate in phloem-feeding insects in the order Hemiptera, mainly leafhoppers (Cicadellidae). The insect capacity in acquisition, transmission, survival, and host range directly determines the epidemiology of phytoplasmas. However, due to the difficulty of insect sampling and the lack of follow-up transmission trials, the confirmed phytoplasma insect hosts are still limited compared with the identified plant hosts. Recently, quantitative polymerase chain reaction (qPCR)-based quick screening of 227 leafhoppers collected in natural habitats unveiled the presence of previously unknown phytoplasmas in six samples. In the present study, 76 leafhoppers, including the six prescreened positive samples, were further examined to identify and characterize the phytoplasma strains by semi-nested PCR. A total of ten phytoplasma strains were identified in leafhoppers from four countries including South Africa, Kyrgyzstan, Australia, and China. Based on virtual restriction fragment length polymorphism (RFLP) analysis, these ten phytoplasma strains were classified into four distinct ribosomal (16Sr) groups (16SrI, 16SrIII, 16SrXIV, and 16SrXV), representing five new subgroups (16SrI-AO, 16SrXIV-D, 16SrXIV-E, 16SrXIV-F, and 16SrXV-C). The results strongly suggest that the newly identified phytoplasma strains not only represent new genetic subgroup lineages, but also extend previously undiscovered geographical distributions. In addition, ten phytoplasma-harboring leafhoppers belonged to seven known leafhopper species, none of which were previously reported insect vectors of phytoplasmas. The findings from this study provide fresh insight into genetic diversity, geographical distribution, and insect host range of phytoplasmas. Further transmission trials and screening of new potential host plants and weed reservoirs in areas adjacent to collection sites of phytoplasma harboring leafhoppers will contribute to a better understanding of phytoplasma transmission and epidemiology. 
    more » « less
  3. Garnas, Jeff R. (Ed.)
    Abstract Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders. 
    more » « less
  4. Abstract

    Plant defenses allow plants to deter or kill their insect herbivores and are considered to be a major driver of host use for herbivorous insects in both ecological and evolutionary time. Many closely related species of insect herbivores differ in their ability to respond to plant defenses and in some cases are specialized to specific plant species. Here we tested whether both mechanical and chemical plant defenses are a major factor in determining the host range of 2 sibling species of Prodoxid bogus yucca moths, Prodoxus decipiens (Riley) and Prodoxus quinquepunctellus (Chambers) that feed within the inflorescence stalk of Yucca species. These 2 moth species have separate suites of host plant species, yet narrowly overlap geographically and share 1 Yucca species, Y. glauca. We surveyed the lignin and cellulose content, the force required to the puncture the stalk tissue, and saponin concentration across 5 Yucca species used as hosts. Lignin, cellulose concentrations, and stalk hardness differed among Yucca species but did not correlate with host use patterns by the moths. Saponin concentrations in the stalk tissue were relatively low for yuccas (<1%) and did not differ among species. The results suggest that these moth species should be able to use each other’s hosts for egg deposition. Additional factors such as larval development or competition among larvae for feeding space may serve to keep moth species from expanding onto plants used by its sibling species.

     
    more » « less
  5. In contrast to predictions from nitrogen limitation theory, recent studies have shown that herbivorous migratory insects tend to be carbohydrate (not protein) limited, likely due to increased energy demands, leading them to preferentially feed on high carbohydrate plants. However, additional factors such as mechanical and chemical defenses can also influence host plant choice and nutrient accessibility. In this study, we investigated the effects of plant protein and carbohydrate availability on plant selection and performance for a migratory generalist herbivore, the Australian plague locust, Chortoicetes terminifera. We manipulated the protein and carbohydrate content of seedling wheat ( Triticum aestivum L. ) by increasing the protein:carbohydrate ratio using nitrogen (N) fertilizer, and manipulated the physical structure of the plants by grinding and breaking down cell walls after drying the plants. Using a full factorial design, we ran both choice and no-choice experiments to measure preference and performance. We confirmed locust preference for plants with a lower protein-carbohydrate ratio (unfertilized plants). Unlike previous studies with mature wild grass species, we found that intact plants supported better performance than dried and ground plants, suggesting that cell wall removal may only improve performance for tougher or more carbohydrate-rich plants. These results add to the growing body of evidence suggesting that several migratory herbivorous species perform better on plants with a lower protein:carbohydrate ratio. 
    more » « less