skip to main content

Title: Identification of Potential Host Plants of Sap-Sucking Insects (Hemiptera: Cicadellidae) Using Anchored Hybrid By-Catch Data
Reliable host plant records are available for only a small fraction of herbivorous insect species, despite their potential agricultural importance. Most available data on insect–plant associations have been obtained through field observations of occurrences of insects on particular plants. Molecular methods have more recently been used to identify potential host plants using DNA extracted from insects, but most prior studies using these methods have focused on chewing insects that ingest tissues expected to contain large quantities of plant DNA. Screening of Illumina data obtained from sap feeders of the hemipteran family Cicadellidae (leafhoppers) using anchored hybrid enrichment indicates that, despite feeding on plant fluids, these insects often contain detectable quantities of plant DNA. Although inclusion of probes for bacterial 16S in the original anchored hybrid probe kit yielded relatively high detection rates for chloroplast 16S, the Illumina short reads also, in some cases, included DNA for various plant barcode genes as “by-catch”. Detection rates were generally only slightly higher for Typhlocybinae, which feed preferentially on parenchyma cell contents, compared to other groups of leafhoppers that feed preferentially on phloem or xylem. These results indicate that next-generation sequencing provides a powerful tool to investigate the specific association between individual insect and more » plant species. « less
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Large systematic revisionary projects incorporating data for hundreds or thousands of taxa require an integrative approach, with a strong biodiversity-informatics core for efficient data management to facilitate research on the group. Our original biodiversity informatics platform, 3i (Internet-accessible Interactive Identification) combined a customized MS Access database backend with ASP-based web interfaces to support revisionary syntheses of several large genera of leafhopers (Hemiptera: Auchenorrhyncha: Cicadellidae). More recently, for our National Science Foundation sponsored project, “GoLife: Collaborative Research: Integrative genealogy, ecology and phenomics of deltocephaline leafhoppers (Hemiptera: Cicadellidae), and their microbial associates”, we selected the new open-source platform TaxonWorks as the cyberinfrastructure. In the scope of the project, the original “3i World Auchenorrhyncha Database” was imported into TaxonWorks. At the present time, TaxonWorks has many tools to automatically import nomenclature, citations, and specimen based collection data. At the time of the initial migration of the 3i database, many of those tools were still under development, and complexity of the data in the database required a custom migration script, which is still probably the most efficient solution for importing datasets with long development history. At the moment, the World Auchenorrhyncha Database comprehensively covers nomenclature of the group and includes data on 70 validmore »families, 6,816 valid genera, 47,064 valid species as well as synonymy and subsequent combinations (Fig. 1). In addition, many taxon records include the original citation, bibliography, type information, etymology, etc. The bibliography of the group includes 37,579 sources, about 1/3 of which are associated with PDF files. Species have distribution records, either derived from individual specimens or as country and state level asserted distribution, as well as biological associations indicating host plants, predators, and parasitoids. Observation matrices in TaxonWorks are designed to handle morphological data associated with taxa or specimens. The matrices may be used to automatically generate interactive identification keys and taxon descriptions. They can also be downloaded to be imported, for example, into Lucid builder, or to perform phylogenetic analysis using an external application. At the moment there are 36 matrices associated with the project. The observation matrix from GoLife project covers 798 taxa by 210 descriptors (most of which are qualitative multi-state morphological descriptors) (Fig. 2). Illustrations are provided for 9,886 taxa and organized in the specialized image matrix and could be used as a pictorial key for determination of species and taxa of a higher rank. For the phylogenetic analysis, a dataset was constructed for 730 terminal taxa and >160,000 nucleotide positions obtained using anchored hybrid enrichment of genomic DNA for a sample of leafhoppers from the subfamily Deltocephalinae and outgroups. The probe kit targets leafhopper genes, as well as some bacterial genes (endosymbionts and plant pathogens transmitted by leafhoppers). The maximum likelihood analyses of concatenated nucleotide and amino acid sequences as well as coalescent gene tree analysis yielded well-resolved phylogenetic trees (Cao et al. 2022). Raw sequence data have been uploaded to the Sequence Read Archive on GenBank. Occurrence and morphological data, as well as diagnostic images, for voucher specimens have been incorporated into TaxonWorks. Data in TaxonWorks could be exported in raw format, get accessed via Application Programming Interface (API), or be shared with external data aggregators like Catalogue of Life, GBIF, iDigBio.« less
  2. Phytoplasmas are obligate transkingdom bacterial parasites that infect a variety of plant species and replicate in phloem-feeding insects in the order Hemiptera, mainly leafhoppers (Cicadellidae). The insect capacity in acquisition, transmission, survival, and host range directly determines the epidemiology of phytoplasmas. However, due to the difficulty of insect sampling and the lack of follow-up transmission trials, the confirmed phytoplasma insect hosts are still limited compared with the identified plant hosts. Recently, quantitative polymerase chain reaction (qPCR)-based quick screening of 227 leafhoppers collected in natural habitats unveiled the presence of previously unknown phytoplasmas in six samples. In the present study, 76 leafhoppers, including the six prescreened positive samples, were further examined to identify and characterize the phytoplasma strains by semi-nested PCR. A total of ten phytoplasma strains were identified in leafhoppers from four countries including South Africa, Kyrgyzstan, Australia, and China. Based on virtual restriction fragment length polymorphism (RFLP) analysis, these ten phytoplasma strains were classified into four distinct ribosomal (16Sr) groups (16SrI, 16SrIII, 16SrXIV, and 16SrXV), representing five new subgroups (16SrI-AO, 16SrXIV-D, 16SrXIV-E, 16SrXIV-F, and 16SrXV-C). The results strongly suggest that the newly identified phytoplasma strains not only represent new genetic subgroup lineages, but also extend previously undiscovered geographical distributions.more »In addition, ten phytoplasma-harboring leafhoppers belonged to seven known leafhopper species, none of which were previously reported insect vectors of phytoplasmas. The findings from this study provide fresh insight into genetic diversity, geographical distribution, and insect host range of phytoplasmas. Further transmission trials and screening of new potential host plants and weed reservoirs in areas adjacent to collection sites of phytoplasma harboring leafhoppers will contribute to a better understanding of phytoplasma transmission and epidemiology.« less
  3. Abstract

    Phytoplasmas (Mollicutes,Acholeplasmataceae), vector‐borne obligate bacterial plant parasites, infect nearly 1,000 plant species and unknown numbers of insects, mainly leafhoppers (Hemiptera, Deltocephalinae), which play a key role in transmission and epidemiology. Although the plant–phytoplasma–insect association has been evolving for >300 million years, nearly all known phytoplasmas have been discovered as a result of the damage inflicted by phytoplasma diseases on crops. Few efforts have been made to study phytoplasmas occurring in noneconomically important plants in natural habitats. In this study, a subsample of leafhopper specimens preserved in a large museum biorepository was analyzed to unveil potential new associations. PCR screening for phytoplasmas performed on 227 phloem‐feeding leafhoppers collected worldwide from natural habitats revealed the presence of 6 different previously unknown phytoplasma strains. This indicates that museum collections of herbivorous insects represent a rich and largely untapped resource for discovery of new plant pathogens, that natural areas worldwide harbor a diverse but largely undiscovered diversity of phytoplasmas and potential insect vectors, and that independent epidemiological cycles occur in such habitats, posing a potential threat of disease spillover into agricultural systems. Larger‐scale future investigations will contribute to a better understanding of phytoplasma genetic diversity, insect host range, and insect‐borne phytoplasma transmission andmore »provide an early warning for the emergence of new phytoplasma diseases across global agroecosystems.

    « less
  4. Abstract

    The genusLiriomyzaMik (Diptera: Agromyzidae) is a diverse and globally distributed group of acalyptrate flies. Phylogenetic relationships amongLiriomyzaspecies have remained incompletely investigated and have never been fully addressed using molecular data. Here, we reconstruct the phylogeny of the genusLiriomyzausing various phylogenetic methods (maximum likelihood, Bayesian inference, and gene tree coalescence) on target‐capture‐based phylogenomic datasets (nucleotides and amino acids) obtained from anchored hybrid enrichment (AHE). We have recovered tree topologies that are nearly congruent across all data types and methods, and individual clade support is strong across all phylogenetic analyses. Moreover, defined morphological species groups and clades are well‐supported in our best estimates of the molecular phylogeny.Liriomyza violivora(Spencer) is a sister group to all remaining sampledLiriomyzaspecies, and the well‐known polyphagous vegetable pests [L. huidobrensis(Blanchard),L. langeiFrick,L. bryoniae.(Kaltenbach),L. trifolii(Burgess),L. sativaeBlanchard, andL. brassicae(Riley)]. belong to multiple clades that are not particularly closely related on the trees. Often, closely relatedLiriomyzaspecies feed on distantly related host plants. We reject the hypothesis that cophylogenetic processes betweenLiriomyzaspecies and their host plants drive diversification in this genus. Instead,Liriomyzaexhibits a widespread pattern of major host shifts across plant taxa. Our new phylogenetic estimate forLiriomyzaspecies provides considerable new information on the evolution of host‐use patterns in this genus. In addition, itmore »provides a framework for further study of the morphology, ecology, and diversification of these important flies.

    « less
  5. Abstract Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall riskmore »and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders.« less