skip to main content


Title: Hygroscopicity of polycatechol and polyguaiacol secondary organic aerosol in sub- and supersaturated water vapor environments
Polycatechol and polyguaiacol are light-absorbing and water-insoluble particles that efficiently form from iron-catalyzed reactions with aromatic compounds from biomass burning emissions. Little quantitative information is known about their water uptake and cloud or haze droplet formation ability. In this study, polycatechol and polyguaiacol particles were synthesized in the laboratory, and their cloud condensation nucleation efficiencies were investigated under sub- and supersaturated relative humidity (RH) conditions using a hygroscopicity tandem differential mobility analyzer (H-TDMA) and a cloud condensation nuclei counter (CCNC), respectively. Experimental results show that both polymeric materials are slightly hygroscopic and that their single hygroscopicity parameter ( κ ) ranges from 0.03 to 0.25, which is within the κ range for secondary organic aerosols (SOA). Polycatechol is more hygroscopic than polyguaiacol, which is explained by differences in their structure. Polyguaiacol has similar water uptake as other insoluble organic compounds, and droplet formation is modelled well with Brunauer–Emmett–Teller (BET) or Frankel Hill Hershey-Adsorption Isotherm theory (FHH-AT). Both polymeric materials are not strongly surface active in range of 0.5 to 30 g L −1 , and thus differences in subsaturated and supersaturated hygroscopicity measurement are not attributed to the presence of surface-active materials. Instead, it is due to the solubility limits of both chemicals and H-TDMA being driven by water adsorption. The implications of these results are discussed in the context of aerosol–cloud interactions from the hygroscopicity of aerosols from primary and secondary sources.  more » « less
Award ID(s):
1708337 1723920
NSF-PAR ID:
10312326
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Science: Atmospheres
ISSN:
2634-3606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nitrogen-containing Organic Carbon (NOC) is a major constituent of atmospheric aerosols and they have received significant attention in the atmospheric science community. While extensive research and advancements have been made regarding their emission sources, concentrations, and their secondary formation in the atmosphere, little is known about their water uptake efficiencies and their subsequent role in climate, air quality, and visibility. In this study, we investigated the water uptake of two sparingly soluble aromatic NOCs: o -aminophenol (oAP) and p -aminophenol (pAP) under subsaturated and supersaturated conditions using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Cloud Condensation Nuclei Counter (CCNC), respectively. Our results show that oAP and pAP are slightly hygroscopic with comparable hygroscopicities to various studied organic aerosols. The supersaturated single hygroscopicity parameter ( κ CCN ) was measured and reported to be 0.18 ± 0.05 for oAP and 0.04 ± 0.02 for pAP, indicating that oAP is more hygroscopic than pAP despite them having the same molecular formulae. The observed disparity in hygroscopicity is attributed to the difference in functional group locations, interactions with gas phase water molecules, and the reported bulk water solubilities of the NOC. Under subsaturated conditions, both oAP and pAP aerosols showed size dependent water uptake. Both species demonstrated growth at smaller dry particle sizes, and shrinkage at larger dry particle sizes. The measured growth factor ( G f ) range, at RH = 85%, for oAP was 1.60–0.74 and for pAP was 1.53–0.74 with increasing particle size. The growth and shrinkage dichotomy is attributed to morphological particle differences verified by TEM images of small and large particles. Subsequently, aerosol physicochemical properties must be considered to properly predict the droplet growth of NOC aerosols in the atmosphere. 
    more » « less
  2. Abstract. The impact of molecular level surface chemistry for aerosol water-uptake and droplet growth is not well understood. In this work, spherical, nonporous, monodisperse polystyrene latex (PSL) particles treated with different surface functional groups are exploited to isolate the effects of aerosol surface chemistry for droplet activation. PSL is effectively water insoluble and changes in the particle surface may be considered acritical factor in the initial water uptake of water-insoluble material. The droplet growth of two surface modified types of PSL (PSL-NH2 andPSL-COOH) along with plain PSL was measured in a supersaturated environmentwith a Cloud Condensation Nuclei Counter (CCNC). Three droplet growth models – traditional Köhler (TK), Flory–Huggins Köhler (FHK) and the Frenkel–Halsey–Hill adsorption theory (FHH-AT) were compared with experimental data. The experimentally determined single hygroscopicity parameter, κ, was found within the range from 0.002 to 0.04. The traditional Köhler prediction assumes Raoult's law solute dissolution and underestimates the water-uptake ability of the PSL particles. FHK can be applied to polymeric aerosol; however, FHK assumes that the polymer is soluble and hydrophilic. Thus, the FHK model generates a negative result for hydrophobic PSL and predicts non-activation behavior that disagrees with the experimental observation. The FHH-AT model assumes that a particle is water insoluble and can be fit with two empirical parameters (AFHH and BFHH). The FHH-AT prediction agrees with the experimental data and can differentiate the water uptake behavior of the particles owing to surface modification of PSL surface. PSL-NH2 exhibits slightly higher hygroscopicity than the PSL-COOH, whereas plain PSL is the least hygroscopic among the three. This result is consistent with the polarity of surface functional groups and their affinity to water molecules. Thus, changes in AFHH and BFHH can be quantified when surface modification is isolated for the study of water-uptake. The fitted AFHH for PSL-NH2, PSL-COOH, and plain PSL is 0.23, 0.21, and 0.18 when BFHH is unity. To simplify the use of FHH-AT for use in cloud activation models, we also present and test a new single parameter framework for insoluble compounds, κFHH. κFHH is within 5 % agreement ofthe experimental data and can be applied to describe a single-parameterhygroscopicity for water-insoluble aerosol with surface modified properties. 
    more » « less
  3. In this work, we studied the Cloud Condensation nuclei (CCN) activity and subsaturated droplet growth of Phthalic acid (PTA), isophthalic acid, (IPTA) and terephthalic acid (TPTA), significant benzene polycarboxylic acids and structural isomers found in the atmosphere. Köhler Theory can be effectively applied for hygroscopicity analysis of PTA due to its higher aqueous solubility compared to IPTA and TPTA. As with other hygroscopicity studies of partially water-soluble and effectively water insoluble species, the supersaturated and subsaturated hygroscopicity derived from (KT) principles do not agree. To address the disparities in the sub- and supersaturated droplet growth, we developed a new analytical framework called the Hybrid Activity Model (HAM). HAM incorporates the aqueous solubility of a solute within an adsorption-based activation framework. Frenkel-Halsey-Hill (FHH)-Adsorption Theory (FHH-AT) was combined with the aqueous solubility of the compound to develop HAM. Analysis from HAM was validated using laboratory measurements of pure PTA, IPTA, TPTA and PTA-IPTA internal mixtures. Furthermore, the results generated using HAM were tested against traditional KT and FHH-AT to compare their water uptake predictive capabilities. A single-hygroscopicity parameter was also developed based on the HAM framework. Results show that the HAM based hygroscopicity parameter based can successfully simulate the water uptake behavior of the pure and internally mixed samples. Results indicate that the HAM framework may be applied to atmospheric aerosols of varying chemical structures and aqueous solubility. 
    more » « less
  4. Atmospheric aerosols are key contributors to cloud condensation nuclei (CCN) and ice nucleating particle (INP) formation, which can offset positive radiative forcing. Aerosol particles can undergo many cycles of droplet activation and subsequent drying before their removal from the atmosphere through dry or wet deposition. Cloud-aerosol-precipitation interactions are affected by cloud droplet or ice crystal formation, which is related to the physicochemical properties of aerosol particles. Isoprene-derived secondary organic aerosol (iSOA) is an abundant component aerosol and has been previously found in INPs and cloud water residues, and it includes both soluble and insoluble residues in its particle matrix. Currently, most of our understanding of iSOA is derived from studying the soluble residues, but there has been a measurement gap for characterizing the insoluble residues. These measurements are needed as previous research has suggested that insoluble components could be important with respect to CCN and INP formation. Herein, a unique approach is utilized to collect the insoluble residues of SOA in ~3 μm droplets collected from a Spot Sampler from Aerosol Devices, Inc. iSOA is generated by reactive uptake of IEPOX onto acidic seed particles (ammonium sulfate + sulfuric acid) in a humidified atmospheric chamber under dark conditions. Droplets are impacted directly on a substrate or in a liquid medium to study the roles of insoluble residues from both single-particle and bulk perspectives. A suite of microspectroscopy techniques, including Raman and optical photothermal infrared (O-PTIR) spectroscopy, are used to probe the chemical composition of the residues. Atomic force microscopy – photothermal infrared (AFM-PTIR) spectroscopy and Nanoparticle Tracking Analysis (NTA) are used to measure the size distributions of the residues. These insights may help understand the properties of residues from cloud droplet evaporation and subsequent cloud-aerosol-precipitation interactions in the atmosphere. 
    more » « less
  5. Volatile organic matter that is suspended in the atmosphere such as α-Pinene and β-caryophyllene undergoes aging processes, as well as chemical and photooxidation reactions to create secondary organic aerosol (SOA), which can influence the indirect effect of aerosol particles and the radiative budget. The presence and impact of water vapor and ammonium sulfate (ubiquitous species in the atmosphere) on the hygroscopicity and CCN activity of SOA has not been well characterized. In this research, three water-uptake measurement methods: cavity ring-down spectroscopy (CRD), humidified tandem differential mobility analysis (HTDMA), and cloud condensation nuclei counting (CCNC) were employed to study the hygroscopicity of α-pinene and β-caryophyllene SOA formed under dark ozonolysis. We observed the changes in water uptake of SOA in the absence and presence of water vapor at ~70 % RH and ammonium sulfate seeds. Measured hygroscopicity was represented by the single hygroscopicity parameter (κ). κ of α-pinene SOA was measured to be 0.04 and can increase up to 0.19 in the presence of water vapor and ammonium sulfate. β-caryophyllene SOA exhibited non-hygroscopic properties with κ values that were effectively 0. It is proposed that a difference in the viscosity and hydrophobicity of the SOA may be the primary factor that leads to changes in hygroscopicity. 
    more » « less