skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase space study of viscous fingering and saturation pre- and post-breakthrough using lattice Boltzmann simulations of two-phase flow
Award ID(s):
1918126
PAR ID:
10312414
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Arabian Journal of Geosciences
Volume:
14
Issue:
23
ISSN:
1866-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polarimetric variables such as differential phase ΦDPand its range derivative, specific differential phaseKDP, contain useful information for improving quantitative precipitation estimation (QPE) and microphysics retrieval. However, the usefulness of the current operationally utilized estimation method ofKDPis limited by measurement error and artifacts resulting from the differential backscattering phaseδ. The contribution ofδcan significantly influence the ΦDPmeasurements and therefore negatively affect theKDPestimates. Neglecting the presence ofδwithin non-Rayleigh scattering regimes has also led to the adoption of incorrect terminology regarding signatures seen within current operationalKDPestimates implying associated regions of unrealistic liquid water content. A new processing method is proposed and developed to estimate bothKDPandδusing classification and linear programming (LP) to reduce bias inKDPestimates caused by theδcomponent. It is shown that by applying the LP technique specifically to the rain regions of Rayleigh scattering along a radial profile, accurate estimates of differential propagation phase, specific differential phase, and differential backscattering phase can be retrieved within regions of both Rayleigh and non-Rayleigh scattering. This new estimation method is applied to cases of reported hail and tornado debris, and the LP results are compared to the operationally utilized least squares fit (LSF) estimates. The results show the potential use of the differential backscattering phase signature in the detection of hail and tornado debris. 
    more » « less
  2. In this work, we investigate grid-forming control for power systems containing three-phase and single-phase converters connected to unbalanced distribution and transmission networks, investigate self-balancing between single-phase converters, and propose a novel balancing feedback for grid-forming control that explicitly allows to trade-off unbalances in voltage and power. We develop a quasi-steady-state power network model that allows to analyze the interactions between three-phase and single-phase power converters across transmission, distribution, and standard transformer interconnections. We first investigate conditions under which this general network admits a well-posed kron-reduced quasi-steady-state network model. Our main contribution leverages this reduced-order model to develop analytical conditions for stability of the overall network with grid-forming three-phase and single-phase converters connected through standard transformer interconnections. Specifically, we provide conditions on the network topology under which (i) single-phase converters autonomously self-synchronize to a phase-balanced operating point and (ii) single-phase converters phase-balance through synchronization with three-phase converters. Moreover, we establish that the conditions can be relaxed if a phase-balancing feedback control is used. Finally, case studies combining detailed models of transmission systems (i.e., IEEE 9-bus) and distribution systems (i.e., IEEE 13-bus) are used to illustrate the results for (i) a power system containing a mix of transmission and distribution connected converters and, (ii) a power system solely using distribution-connected converters at the grid edge. 
    more » « less