skip to main content


Title: An Enzymatic Platform for Primary Amination of 1-Aryl-2-alkyl Alkynes
Propargyl amines are versatile synthetic intermediates with numerous applications in the pharmaceutical industry. An attractive strategy for efficient preparation of these compounds is nitrene propargylic C(sp3)−H insertion. However, achieving this reaction with good chemo-, regio-, and enantioselective control has proven to be challenging. Here, we report an enzymatic platform for the enantioselective propargylic amination of alkynes using a hydroxylamine derivative as the nitrene precursor. Cytochrome P450 variant PA-G8 catalyzing this transformation was identified after eight rounds of directed evolution. A variety of 1-aryl-2-alkyl alkynes are accepted by PA G8, including those bearing heteroaromatic rings. This biocatalytic process is efficient and selective (up to 2610 total turnover number (TTN) and 96% ee) and can be performed on preparative scale.  more » « less
Award ID(s):
2016137
NSF-PAR ID:
10312454
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
ISSN:
0002-7863
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report a highly enantioselective intermolecular C−H bond silylation catalyzed by a phosphoramidite‐ligated iridium catalyst. Under reagent‐controlled protocols, propargylsilanes resulting from C(sp3)−H functionalization, as well the regioisomeric and synthetically versatile allenylsilanes, could be obtained with excellent levels of enantioselectivity and good to excellent control of propargyl/allenyl selectivity. In the case of unsymmetrical dialkyl acetylenes, good to excellent selectivity for functionalization at the less‐hindered site was also observed. A variety of electrophilic silyl sources (R3SiOTf and R3SiNTf2), either commercial or in situgenerated, were used as the silylation reagents, and a broad range of simple and functionalized alkynes, including aryl alkyl acetylenes, dialkyl acetylenes, 1,3‐enynes, and drug derivatives were successfully employed as substrates. Detailed mechanistic experiments and DFT calculations suggest that an η3‐propargyl/allenyl Ir intermediate is generated upon π‐complexation‐assisted deprotonation and undergoes outer‐sphere attack by the electrophilic silylating reagent to give propargylic silanes, with the latter step identified as the enantiodetermining step.

     
    more » « less
  2. Abstract

    We report a highly enantioselective intermolecular C−H bond silylation catalyzed by a phosphoramidite‐ligated iridium catalyst. Under reagent‐controlled protocols, propargylsilanes resulting from C(sp3)−H functionalization, as well the regioisomeric and synthetically versatile allenylsilanes, could be obtained with excellent levels of enantioselectivity and good to excellent control of propargyl/allenyl selectivity. In the case of unsymmetrical dialkyl acetylenes, good to excellent selectivity for functionalization at the less‐hindered site was also observed. A variety of electrophilic silyl sources (R3SiOTf and R3SiNTf2), either commercial or in situgenerated, were used as the silylation reagents, and a broad range of simple and functionalized alkynes, including aryl alkyl acetylenes, dialkyl acetylenes, 1,3‐enynes, and drug derivatives were successfully employed as substrates. Detailed mechanistic experiments and DFT calculations suggest that an η3‐propargyl/allenyl Ir intermediate is generated upon π‐complexation‐assisted deprotonation and undergoes outer‐sphere attack by the electrophilic silylating reagent to give propargylic silanes, with the latter step identified as the enantiodetermining step.

     
    more » « less
  3. Abstract

    Sigmatropic rearrangements, while rare in biology, offer opportunities for the efficient and selective synthesis of complex chemical motifs. A “P411” serine‐ligated variant of cytochrome P450BM3has been engineered to initiate a sulfimidation/[2,3]‐sigmatropic rearrangement sequence in whole E. coli cells, a non‐natural function for any enzyme, providing access to enantioenriched, protected allylic amines. Five mutations in the enzyme substantially enhance its activity toward this new function, demonstrating the evolvability of the catalyst toward challenging nitrene transfer reactions. The evolved catalyst additionally performs the highly enantioselective imidation of non‐allylic sulfides.

     
    more » « less
  4. Abstract

    Sigmatropic rearrangements, while rare in biology, offer opportunities for the efficient and selective synthesis of complex chemical motifs. A “P411” serine‐ligated variant of cytochrome P450BM3has been engineered to initiate a sulfimidation/[2,3]‐sigmatropic rearrangement sequence in whole E. coli cells, a non‐natural function for any enzyme, providing access to enantioenriched, protected allylic amines. Five mutations in the enzyme substantially enhance its activity toward this new function, demonstrating the evolvability of the catalyst toward challenging nitrene transfer reactions. The evolved catalyst additionally performs the highly enantioselective imidation of non‐allylic sulfides.

     
    more » « less
  5. Herein we report an intermolecular propargylic C–H amination of alkynes. This reaction is operationally convenient and requires no transition metal catalysts or additives. Terminal, silyl, and internal alkynes bearing a wide range of functional groups can be aminated in high yields. The regioselectivity of amination for unsymmetrical internal alkynes is strongly influenced by substitution pattern (tertiary > secondary > primary) and by relatively remote heteroatomic substituents. We demonstrate that amination of alkynes bearing α-stereocenters occurs with retention of configuration at the newly-formed C–N bond. Competition experiments between alkynes, kinetic isotope effects, and DFT calculations are performed to confirm the mechanistic hypothesis that initial ene reaction of a selenium bis(imide) species is the rate- and product-determining step. This ene reaction has a transition state that results in substantial partial positive charge development at the carbon atom closer to the amination position. Inductive and/or hyperconjugative stabilization or destabilization of this positive charge explains the observed regioselectivities. 
    more » « less