skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physics-Informed Tensor-Train ConvLSTM for Volumetric Velocity Forecasting of the Loop Current
According to the National Academies, a week long forecast of velocity, vertical structure, and duration of the Loop Current (LC) and its eddies at a given location is a critical step toward understanding their effects on the gulf ecosystems as well as toward anticipating and mitigating the outcomes of anthropogenic and natural disasters in the Gulf of Mexico (GoM). However, creating such a forecast has remained a challenging problem since LC behavior is dominated by dynamic processes across multiple time and spatial scales not resolved at once by conventional numerical models. In this paper, building on the foundation of spatiotemporal predictive learning in video prediction, we develop a physics informed deep learning based prediction model called—Physics-informed Tensor-train ConvLSTM (PITT-ConvLSTM)—for forecasting 3D geo-spatiotemporal sequences. Specifically, we propose (1) a novel 4D higher-order recurrent neural network with empirical orthogonal function analysis to capture the hidden uncorrelated patterns of each hierarchy, (2) a convolutional tensor-train decomposition to capture higher-order space-time correlations, and (3) a mechanism that incorporates prior physics from domain experts by informing the learning in latent space. The advantage of our proposed approach is clear: constrained by the law of physics, the prediction model simultaneously learns good representations for frame dependencies (both short-term and long-term high-level dependency) and inter-hierarchical relations within each time frame. Experiments on geo-spatiotemporal data collected from the GoM demonstrate that the PITT-ConvLSTM model can successfully forecast the volumetric velocity of the LC and its eddies for a period greater than 1 week.  more » « less
Award ID(s):
1828181
PAR ID:
10312466
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Artificial Intelligence
Volume:
4
ISSN:
2624-8212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study evaluates the performance of deep learning approach in the prediction of the ionospheric total electron content (TEC) during magnetically quiet periods. Two deep learning techniques, long short‐term memory (LSTM) and convolutional LSTM (ConvLSTM), are employed to predict TEC values 24 hr ahead in the vicinity of the Korean Peninsula (26.5°–40°N, 121°–134.5°E). The LSTM method predicts TEC at a single point based on time series of data at that point, whereas the ConvLSTM method simultaneously predicts TEC values at multiple points using spatiotemporal distribution of TEC. Both the LSTM and ConvLSTM models are trained using the complete regional TEC maps reconstructed by applying the Deep Convolutional Generative Adversarial Network–Poisson Blending (DCGAN‐PB) method to observed TEC data. The training period spans from 2002 to 2018, and the model performance is evaluated using 2019 data. Our results show that the ConvLSTM method outperforms the LSTM method, generating more reliable TEC maps with smaller root mean square errors when compared to the ground truth (DCGAN‐PB TEC maps). This outcome indicates that deep learning models can improve the prediction accuracy of TEC at a specific point by taking into account spatial information of TEC. We conclude that ConvLSTM is a reliable and efficient approach for the prompt ionospheric prediction. 
    more » « less
  2. Despite the large efforts made by the ocean modeling community, such as the GODAE (Global Ocean Data Assimilation Experiment), which started in 1997 and was renamed as OceanPredict in 2019, the prediction of ocean currents has remained a challenge until the present day—particularly in ocean regions that are characterized by rapid changes in their circulation due to changes in atmospheric forcing or due to the release of available potential energy through the development of instabilities. Ocean numerical models’ useful forecast window is no longer than two days over a given area with the best initialization possible. Predictions quickly diverge from the observational field throughout the water and become unreliable, despite the fact that they can simulate the observed dynamics through other variables such as temperature, salinity and sea surface height. Numerical methods such as harmonic analysis are used to predict both short- and long-term tidal currents with significant accuracy. However, they are limited to the areas where the tide was measured. In this study, a new approach to ocean current prediction based on deep learning is proposed. This method is evaluated on the measured energetic currents of the Gulf of Mexico circulation dominated by the Loop Current (LC) at multiple spatial and temporal scales. The approach taken herein consists of dividing the velocity tensor into planes perpendicular to each of the three Cartesian coordinate system directions. A Long Short-Term Memory Recurrent Neural Network, which is best suited to handling long-term dependencies in the data, was thus used to predict the evolution of the velocity field in each plane, along each of the three directions. The predicted tensors, made of the planes perpendicular to each Cartesian direction, revealed that the model’s prediction skills were best for the flow field in the planes perpendicular to the direction of prediction. Furthermore, the fusion of all three predicted tensors significantly increased the overall skills of the flow prediction over the individual model’s predictions. The useful forecast period of this new model was greater than 4 days with a root mean square error less than 0.05 cm·s−1 and a correlation coefficient of 0.6. 
    more » « less
  3. A divide-and-conquer (DAC) machine learning approach was first proposed by Wang et al. to forecast the sea surface height (SSH) of the Loop Current System (LCS) in the Gulf of Mexico. In this DAC approach, the forecast domain was divided into non-overlapping partitions, each of which had their own prediction model. The full domain SSH prediction was recovered by interpolating the SSH across each partition boundaries. Although the original DAC model was able to predict the LCS evolution and eddy shedding more than two months and three months in advance, respectively, growing errors at the partition boundaries negatively affected the model forecasting skills. In the study herein, a new partitioning method, which consists of overlapping partitions is presented. The region of interest is divided into 50%-overlapping partitions. At each prediction step, the SSH value at each point is computed from overlapping partitions, which significantly reduces the occurrence of unrealistic SSH features at partition boundaries. This new approach led to a significant improvement of the overall model performance both in terms of features prediction such as the location of the LC eddy SSH contours but also in terms of event prediction, such as the LC ring separation. We observed an approximate 12% decrease in error over a 10-week prediction, and also show that this method can approximate the location and shedding of eddy Cameron better than the original DAC method. 
    more » « less
  4. Abstract While data-driven approaches demonstrate great potential in atmospheric modeling and weather forecasting, ocean modeling poses distinct challenges due to complex bathymetry, land, vertical structure, and flow non-linearity. This study introduces OceanNet, a principled neural operator-based digital twin for regional sea-suface height emulation. OceanNet uses a Fourier neural operator and predictor-evaluate-corrector integration scheme to mitigate autoregressive error growth and enhance stability over extended time scales. A spectral regularizer counteracts spectral bias at smaller scales. OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream), focusing on the task of seasonal prediction for Loop Current eddies and the Gulf Stream meander. Trained using historical sea surface height (SSH) data, OceanNet demonstrates competitive forecast skill compared to a state-of-the-art dynamical ocean model forecast, reducing computation by 500,000 times. These accomplishments demonstrate initial steps for physics-inspired deep neural operators as cost-effective alternatives to high-resolution numerical ocean models. 
    more » « less
  5. null (Ed.)
    Abstract The Loop Current (LC) system has long been assumed to be close to geostrophic balance despite its strong flow and the development of large meanders and strong frontal eddies during unstable phases. The region between the LC meanders and its frontal eddies was shown to have high Rossby numbers indicating nonlinearity; however, the effect of the nonlinear term on the flow has not been studied so far. In this study, the ageostrophy of the LC meanders is assessed using a high-resolution numerical model and geostrophic velocities from altimetry. A formula to compute the radius of curvature of the flow from the velocity field is also presented. The results indicate that during strong meandering, especially before and during LC shedding and in the presence of frontal eddies, the centrifugal force becomes as important as the Coriolis force and the pressure gradient force: LC meanders are in gradient-wind balance. The centrifugal force modulates the balance and modifies the flow speed, resulting in a subgeostrophic flow in the LC meander trough around the LC frontal eddies and supergeostrophic flow in the LC meander crest. The same pattern is found when correcting the geostrophic velocities from altimetry to account for the centrifugal force. The ageostrophic percentage in the cyclonic and anticyclonic meanders is 47% ± 1% and 78% ± 8% in the model and 31% ± 3% and 78% ± 29% in the altimetry dataset, respectively. Thus, the ageostrophic velocity is an important component of the LC flow and cannot be neglected when studying the LC system. 
    more » « less