skip to main content


Title: Deep Learning‐Based Regional Ionospheric Total Electron Content Prediction—Long Short‐Term Memory (LSTM) and Convolutional LSTM Approach
Abstract

This study evaluates the performance of deep learning approach in the prediction of the ionospheric total electron content (TEC) during magnetically quiet periods. Two deep learning techniques, long short‐term memory (LSTM) and convolutional LSTM (ConvLSTM), are employed to predict TEC values 24 hr ahead in the vicinity of the Korean Peninsula (26.5°–40°N, 121°–134.5°E). The LSTM method predicts TEC at a single point based on time series of data at that point, whereas the ConvLSTM method simultaneously predicts TEC values at multiple points using spatiotemporal distribution of TEC. Both the LSTM and ConvLSTM models are trained using the complete regional TEC maps reconstructed by applying the Deep Convolutional Generative Adversarial Network–Poisson Blending (DCGAN‐PB) method to observed TEC data. The training period spans from 2002 to 2018, and the model performance is evaluated using 2019 data. Our results show that the ConvLSTM method outperforms the LSTM method, generating more reliable TEC maps with smaller root mean square errors when compared to the ground truth (DCGAN‐PB TEC maps). This outcome indicates that deep learning models can improve the prediction accuracy of TEC at a specific point by taking into account spatial information of TEC. We conclude that ConvLSTM is a reliable and efficient approach for the prompt ionospheric prediction.

 
more » « less
NSF-PAR ID:
10485136
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
22
Issue:
1
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study reconstructs total electron content (TEC) maps in the vicinity of the Korean Peninsula by employing a deep convolutional generative adversarial network and Poisson blending (DCGAN‐PB). Our interest is to rebuild small‐scale ionosphere structures on the TEC map in a local region where pronounced ionospheric structures, such as the equatorial ionization anomaly, are absent. The reconstructed regional TEC maps have a domain of 120°–135.5°E longitude and 25.5°–41°N latitude with 0.5° resolution. To achieve this, we first train a DCGAN model by using the International Reference Ionosphere‐based TEC maps from 2002 to 2019 (except for 2010 and 2014) as a training data set. Next, the trained DCGAN model generates synthetic complete TEC maps from observation‐based incomplete TEC maps. Final TEC maps are produced by blending of synthetic TEC maps with observed TEC data by PB. The performance of the DCGAN‐PB model is evaluated by testing the regeneration of the masked TEC observations in 2010 (solar minimum) and 2014 (solar maximum). Our results show that a good correlation between the masked and model‐generated TEC values is maintained even with a large percentage (∼80%) of masking. The performance of the DCGAN‐PB model is not sensitive to local time, solar activity, and magnetic activity. Thus, the DCGAN‐PB model can reconstruct fine ionospheric structures in regions where observations are sparse and distinguishing ionospheric structures are absent. This model can contribute to near real‐time monitoring of the ionosphere by immediately providing complete TEC maps.

     
    more » « less
  2. Abstract

    In this research, we present data‐driven forecasting of ionospheric total electron content (TEC) using the Long‐Short Term Memory (LSTM) deep recurrent neural network method. The random forest machine learning method was used to perform a regression analysis and estimate the variable importance of the input parameters. The input data are obtained from satellite and ground based measurements characterizing the solar‐terrestrial environment. We estimate the relative importance of 34 different parameters, including the solar flux, solar wind density, and speed the three components of interplanetary magnetic field, Lyman‐alpha, the Kp, Dst, and Polar Cap (PC) indices. The TEC measurements are taken with 15‐s cadence from an equatorial GPS station located at Bogota, Columbia (4.7110° N, 74.0721° W). The 2008–2017 data set, including the top five parameters estimated using the random forest, is used for training the machine learning models, and the 2018 data set is used for independent testing of the LSTM forecasting. The LSTM method as applied to forecast the TEC up to 5 h ahead, with 30‐min cadence. The results indicate that very good forecasts with low root mean square (RMS) error (high correlation) can be made in the near future and the RMS errors increase as we forecast further into the future. The data sources are satellite and ground based measurements characterizing the solar‐terrestrial environment.

     
    more » « less
  3. Abstract

    Human age estimation is an important and difficult challenge. Different biomarkers and numerous approaches have been studied for biological age estimation, each with its advantages and limitations. In this work, we investigate whether physical activity can be exploited for biological age estimation for adult humans. We introduce an approach based on deep convolutional long short term memory (ConvLSTM) to predict biological age, using human physical activity as recorded by a wearable device. We also demonstrate five deep biological age estimation models including the proposed approach and compare their performance on the NHANES physical activity dataset. Results on mortality hazard analysis using both the Cox proportional hazard model and Kaplan-Meier curves each show that the proposed method for estimating biological age outperforms other state-of-the-art approaches. This work has significant implications in combining wearable sensors and deep learning techniques for improved health monitoring, for instance, in a mobile health environment. Mobile health (mHealth) applications provide patients, caregivers, and administrators continuous information about a patient, even outside the hospital.

     
    more » « less
  4. Soil moisture (SM) plays a significant role in determining the probability of flooding in a given area. Currently, SM is most commonly modeled using physically-based numerical hydrologic models. Modeling the natural processes that take place in the soil is difficult and requires assumptions. Besides, hydrologic model runtime is highly impacted by the extent and resolution of the study domain. In this study, we propose a data-driven modeling approach using Deep Learning (DL) models. There are different types of DL algorithms that serve different purposes. For example, the Convolutional Neural Network (CNN) algorithm is well suited for capturing and learning spatial patterns, while the Long Short-Term Memory (LSTM) algorithm is designed to utilize time-series information and to learn from past observations. A DL algorithm that combines the capabilities of CNN and LSTM called ConvLSTM was recently developed. In this study, we investigate the applicability of the ConvLSTM algorithm in predicting SM in a study area located in south Louisiana in the United States. This study reveals that ConvLSTM significantly outperformed CNN in predicting SM. We tested the performance of ConvLSTM based models by using a combination of different sets of predictors and different LSTM sequence lengths. The study results show that ConvLSTM models can predict SM with a mean areal Root Mean Squared Error (RMSE) of 2.5% and mean areal correlation coefficients of 0.9 for our study area. ConvLSTM models can also provide predictions between discrete SM observations, making them potentially useful for applications such as filling observational gaps between satellite overpasses. 
    more » « less
  5. Abstract

    Prediction of ionospheric state is a critical space weather problem. We expand on our previous research of medium‐range ionospheric forecasts and present new results on evaluating prediction capabilities of three physics‐based ionosphere‐thermosphere models (Thermosphere Ionosphere Electrodynamics General Circulation Model, TIE‐GCM; Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics Model, CTIPe; and Global Ionosphere Thermosphere Model, GITM). The focus of our study is understanding how current modeling approaches may predict the global ionosphere for geomagnetic storms (as studied through 35 storms during 2000–2016). Prediction approach uses physics‐based modeling without any manual model adjustment, quality control, or selection of the results. Our goal is to understand to what extent current physics‐based modeling can be used in total electron content (TEC) prediction and explore uncertainties of these prediction efforts with multiday lead times. The ionosphere‐thermosphere model runs are driven by actual interplanetary conditions, whether those data come from real‐time measurements or predicted values themselves. These model runs were performed by the Community Coordinated Modeling Center (CCMC). Jet Propulsion Laboratory (JPL)‐produced global ionospheric maps (GIMs) were used to validate model TEC estimates. We utilize the True Skill Statistic (TSS) metric for the TEC prediction evaluation, noting that this is but one metric to assess predictive skill and that complete evaluations require combinations of such metrics. The meanings of contingency table elements for the prediction performance are analyzed in the context of ionosphere modeling. Prediction success is between about 0.2 and 0.5 for weak ionospheric disturbances and decreases for strong disturbances. We evaluate the prediction of TEC decreases and increases. Our results indicate that physics‐based modeling during storms shows promise in TEC prediction with multiday lead time.

     
    more » « less