Abstract Accurate cloud type identification and coverage analysis are crucial in understanding the Earth’s radiative budget. Traditional computer vision methods rely on low-level visual features of clouds for estimating cloud coverage or sky conditions. Several handcrafted approaches have been proposed; however, scope for improvement still exists. Newer deep neural networks (DNNs) have demonstrated superior performance for cloud segmentation and categorization. These methods, however, need expert engineering intervention in the preprocessing steps—in the traditional methods—or human assistance in assigning cloud or clear sky labels to a pixel for training DNNs. Such human mediation imposes considerable time and labor costs. We present the application of a new self-supervised learning approach to autonomously extract relevant features from sky images captured by ground-based cameras, for the classification and segmentation of clouds. We evaluate a joint embedding architecture that uses self-knowledge distillation plus regularization. We use two datasets to demonstrate the network’s ability to classify and segment sky images—one with ∼ 85,000 images collected from our ground-based camera and another with 400 labeled images from the WSISEG database. We find that this approach can discriminate full-sky images based on cloud coverage, diurnal variation, and cloud base height. Furthermore, it semantically segments the cloud areas without labels. The approach shows competitive performance in all tested tasks,suggesting a new alternative for cloud characterization.
more »
« less
Segmentation Algorithms for Ground-Based Infrared Cloud Images
The increasing number of Photovoltaic (PV) systems connected to the power grid are vulnerable to the projection of shadows from moving clouds. Global Solar Irradiance (GSI) forecasting allows smart grids to optimize the energy dispatch, preventing energy shortages caused by occlusion of the sun. This investigation compares the performances of machine learning algorithms (not requiring labelled images for training) for realtime segmentation of clouds in images acquired using a ground-based infrared sky imager. Real-time segmentation is utilized to extract cloud features using only the pixels in which clouds are detected.
more »
« less
- Award ID(s):
- 1757207
- PAR ID:
- 10312483
- Date Published:
- Journal Name:
- 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
3D CT point clouds reconstructed from the original CT images are naturally represented in real-world coordinates. Compared with CT images, 3D CT point clouds contain invariant geometric features with irregular spatial distributions from multiple viewpoints. This paper rethinks pulmonary nodule detection in CT point cloud representations. We first extract the multi-view features from a sparse convolutional (SparseConv) encoder by rotating the point clouds with different angles in the world coordinate. Then, to simultaneously learn the discriminative and robust spatial features from various viewpoints, a nodule proposal optimization schema is proposed to obtain coarse nodule regions by aggregating consistent nodule proposals prediction from multi-view features. Last, the multi-level features and semantic segmentation features extracted from a SparseConv decoder are concatenated with multi-view features for final nodule region regression. Experiments on the benchmark dataset (LUNA16) demonstrate the feasibility of applying CT point clouds in lung nodule detection task. Furthermore, we observe that by combining multi-view predictions, the performance of the proposed framework is greatly improved compared to single-view, while the interior texture features of nodules from images are more suitable for detecting nodules in small sizes.more » « less
-
Cloud cover estimation from images taken by sky-facing cameras can be an important input for analyzing current weather conditions and estimating photovoltaic power generation. The constant change in position, shape, and density of clouds, however, makes the development of a robust computational method for cloud cover estimation challenging. Accurately determining the edge of clouds and hence the separation between clouds and clear sky is difficult and often impossible. Toward determining cloud cover for estimating photovoltaic output, we propose using machine learning methods for cloud segmentation. We compare several methods including a classical regression model, deep learning methods, and boosting methods that combine results from the other machine learning models. To train each of the machine learning models with various sky conditions, we supplemented the existing Singapore whole sky imaging segmentation database with hazy and overcast images collected by a camera-equipped Waggle sensor node. We found that the U-Net architecture, one of the deep neural networks we utilized, segmented cloud pixels most accurately. However, the accuracy of segmenting cloud pixels did not guarantee high accuracy of estimating solar irradiance. We confirmed that the cloud cover ratio is directly related to solar irradiance. Additionally, we confirmed that solar irradiance and solar power output are closely related; hence, by predicting solar irradiance, we can estimate solar power output. This study demonstrates that sky-facing cameras with machine learning methods can be used to estimate solar power output. This ground-based approach provides an inexpensive way to understand solar irradiance and estimate production from photovoltaic solar facilities.more » « less
-
3D LiDAR scanners are playing an increasingly important role in autonomous driving as they can generate depth information of the environment. However, creating large 3D LiDAR point cloud datasets with point-level labels requires a significant amount of manual annotation. This jeopardizes the efficient development of supervised deep learning algorithms which are often data-hungry. We present a framework to rapidly create point clouds with accurate pointlevel labels from a computer game. To our best knowledge, this is the first publication on LiDAR point cloud simulation framework for autonomous driving. The framework supports data collection from both auto-driving scenes and user-configured scenes. Point clouds from auto-driving scenes can be used as training data for deep learning algorithms, while point clouds from user-configured scenes can be used to systematically test the vulnerability of a neural network, and use the falsifying examples to make the neural network more robust through retraining. In addition, the scene images can be captured simultaneously in order for sensor fusion tasks, with a method proposed to do automatic registration between the point clouds and captured scene images. We show a significant improvement in accuracy (+9%) in point cloud segmentation by augmenting the training dataset with the generated synthesized data. Our experiments also show by testing and retraining the network using point clouds from user-configured scenes, the weakness/blind spots of the neural network can be fixed.more » « less
-
Surpervoxels are becoming increasingly popular in many point cloud processing applications. However, few methods have been devised specifically for generating compact supervoxels from unstructured three-dimensional (3D) point clouds. In this study, we aimed to generate high quality over-segmentation of point clouds. We propose a merge-swap optimization framework that solves any supervoxel generation problem formulated in energy minimization. In particular, we tailored an energy function that explicitly encourages regular and compact supervoxels with adaptive size control considering local geometric information of point clouds. We also provide two acceleration techniques to reduce the computational overhead. The performance of the proposed merge-swap optimization approach is superior to that of previous work in terms of thorough optimization, computational efficiency, and practical applicability to incorporating control of other properties of supervoxels. The experiments show that our approach produces supervoxels with better segmentation quality than two state-of-the-art methods on three public datasets.more » « less
An official website of the United States government

