The halogens (F, Cl, Br, I) are cycled into the crust via subduction. The presence of F and Cl in arc settings impacts melt viscosity, igneous phase relations, and thermodynamic properties of magma in the pluton-to-volcano system, whereas the systematics of Br and I in melt systems are poorly understood. Mass balance constraints show that more halogens are subducted with the slab than are released during volcanism and passive degassing, suggesting that a halogen sink may exist in the lithosphere. Despite this, the halogen content of the upper continental crust of arc systems and distribution of halogens between plutonic and volcanic arc rocks are poorly quantified. This study presents whole rock halogen (F, Cl, Br, I) concentrations for 22 unaltered, geospatially- and temporally-related Cretaceous granitoid, hypabyssal plutonic, and volcanic rocks from the Sierra Nevada, California. This sampling approach allows direct comparison of plutonic and volcanic counterparts to make inferences about the pluton-volcano relationship. Because F behaves more incompatibly than Cl, Br, and I, late-stage fluid exsolution from melts may concentrate F in plutonic rocks and Cl, Br, and I in volcanic rocks. These whole rock halogen data provide a first-order approximation of the proportion of subducted halogens that are stored in the upper continental crust, and where along the magmatic plumbing path they are stored with important implications for their role in primary igneous processes such as pluton crystallization and volcanism. Ultimately, the results from this work will serve as the preliminary data for a larger study, provide insight into the magnitude of the roles the halogens play during primary igneous processes, and add to the limited halogen data on arc rocks.
more »
« less
Efficient release of bromine by super-eruptions
Abstract Bromine is a key halogen element in the quantification of volcanic volatiles, but analytical difficulties in measuring its very low abundances have prevented progress in understanding its behavior and its role in volcanic emissions. We present a new data set of bromine, chlorine, and fluorine concentrations in melt inclusions and matrix glasses for two rhyolitic super-eruptions from the Toledo and Valles calderas, New Mexico, USA. We show that before eruption, Br and Cl were efficiently partitioned from the gas-saturated magma into a separate fluid phase, and we calculate the mass of halogens in the fluid phase. We further demonstrate that syn-eruptive magma degassing was negligible during the super-eruptions, so that the main source of halogen emissions must have been the fluid phase. If the fluid phase were erupted, the large mass of Br and Cl could have severely impacted the atmospheric chemistry upon eruption.
more »
« less
- Award ID(s):
- 1664308
- PAR ID:
- 10312559
- Date Published:
- Journal Name:
- Geology
- Volume:
- 49
- Issue:
- 12
- ISSN:
- 0091-7613
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The conditions under which halogens partition in favor of an exsolved fluid relative to the coexisting melt are key for understanding many magmatic processes, including volcanic degassing, evolution of crustal melt bodies, and ore formation. We report new F, Cl, and Br fluid/melt partition coefficients for intermediate to silicic melts, for which F and Br data are particularly lacking; and for varying CO2-H2O contents to assess the effects of changing fluid composition (XH2O) on Br fluid/melt partitioning for the first time. The experiments were conducted at pressures 50–120 MPa, temperatures 800–1100 °C, and volatile compositions [molar XH2O = H2O/(H2O +CO2)] of 0.55 to 1, with redox conditions around the Nickel-Nickel Oxygen buffer (fO2 ≈ NNO). Experiments were not doped with Cl, Br, or F and were conducted on natural crystal-bearing volcanic products at conditions close to their respective pre-eruptive state. The experiments therefore provide realistic constraints on halogen partitioning at naturally occurring, brine-undersaturated conditions. Measurements of Br, Cl, and F were made by Secondary Ion Mass Spectrometry (SIMS) on 13 experimental glass products spanning andesite to rhyolitic compositions, together with their natural starting materials from Kelud volcano, Indonesia, and Quizapu volcano, Chile. Fluid compositions were constrained by mass balance. Average bulk halogen fluid/melt partition coefficients and standard deviations are: DClfluid/melt = 3.4 (±3.7 1 s.d.), DFfluid/melt = 1.7 (±1.7), and DBrfluid/melt = 7.1 (±6.4) for the Kelud starting material (bulk basaltic andesite), and DClfluid/melt = 11.1 (±3.5), DFfluid/melt = 0.8 (±0.8), and DBrfluid/melt = 31.3 (±20.9) for Quizapu starting material (bulk dacite). The large range in average partition coefficients is a product of changing XH2O, pressure and temperature. In agreement with studies on synthetic melts, our data show an exponential increase of halogen Dfluid/melt with increasing ionic radius, with partitioning behavior controlled by melt composition according to the nature of the complexes forming in the melt (e.g., SiF4, NaCl, KBr). The fundamental chemistry of the different halogens (differing ionic size and electronegativities) controls the way in which partitioning responds to changes in melt composition and other variables. Experimental results confirm that more Cl partitions into the fluid at higher bulk Cl contents, higher melt Na, higher fluid XH2O ratios, and lower temperatures. Bromine shows similar behavior, though it seems to be more sensitive to temperature and less sensitive to Na content and XH2O. In contrast, F partitioning into the fluid increases as the melt silica content decreases (from 72 to 56 wt% SiO2), which we attribute to the lower abundance of Si available to form F complexes in the melt. These new data provide more insights into the conditions and processes that control halogen degassing from magmas and may help to inform the collection and interpretation of melt inclusions and volcano gas data.more » « less
-
The role of hydroxyl radicals (OH) as a daytime oxidant is well established on a global scale. In specific source regions, such as the marine boundary layer and polluted coastal cities, other daytime oxidants, such as chlorine atoms (Cl) and even bromine atoms (Br), may compete with OH for the oxidation of volatile organic compounds (VOCs) and/or enhance the overall oxidation capacity of the atmosphere. However, the number of studies investigating halogen-initiated secondary organic aerosol (SOA) formation is extremely limited, resulting in large uncertainties in these oxidative aging processes. Here, we characterized the chemical composition and yield of laboratory SOA generated in an oxidation flow reactor (OFR) from the OH and Cl oxidation of n -dodecane ( n -C 12 ) and toluene, and the OH, Cl, and Br oxidation of isoprene and α-pinene. In the OFR, precursors were oxidized using integrated OH, Cl, and Br exposures ranging from 3.1 × 10 10 to 2.3 × 10 12 , 6.1 × 10 9 to 1.3× 10 12 and 3.2 × 10 10 to 9.7 × 10 12 molecules cm −3 s −1 , respectively. Like OH, Cl facilitated multistep SOA oxidative aging over the range of OFR conditions that were studied. In contrast, the extent of Br-initiated SOA oxidative aging was limited. SOA elemental ratios and mass yields obtained in the OFR studies were comparable to those obtained from OH and Cl oxidation of the same precursors in environmental chamber studies. Overall, our results suggest that alkane, aromatic, and terpenoid SOA precursors are characterized by distinct OH- and halogen-initiated SOA yields, and that while Cl may enhance the SOA formation potential in regions influenced by biogenic and anthropogenic emissions, Br may have the opposite effect.more » « less
-
Halogens (F, Cl, Br, I) are primary components of volcanic gas emissions and play an essential role in continental arc magmatic environments due to their solubility in fluids that generate metallic ore deposits. Despite their ubiquity, the behavior and budget of halogens in continental arc environments are poorly constrained. We investigated the plutonic and volcanic halogen budgets in intermediate-to-felsic igneous rocks (56–77 wt% SiO2) from the Sierra Nevada (California) - a Mesozoic continental arc where plutonic and volcanic outcrops can be correlated via their geographic, compositional, and geochronologic framework. We measured the halogen concentrations of bulk rock powders and their leachates via ion chromatography (F, Cl) and ICP-MS (Br, I). Halogen concentrations in our rock powders range between 107–727 μg/g F, 13–316 μg/g Cl, 2–323 ng/g Br, and 1–69 ng/g I. In contrast, leachates yielded 3–4 orders of magnitude less Cl and F, one order of magnitude less I, and similar amounts of Br compared to their corresponding bulk rocks. Preliminary data show no significant differences between volcanic and plutonic samples, suggesting that halogen concentrations in these rocks are insensitive to shallow fractionation. Although F and I exhibit no correlation with major element compositions, Cl and Br display negative trends with increasing SiO2 and K2O, and positive trends with increasing Fe2O3T, MnO, MgO, CaO, and TiO2, suggesting mafic minerals as important hosts of structurally bound halogens. Overall, Sierran plutonic rocks display low halogen contents (max. F, Cl = 727, 315 μg/g), consistent with biotite- and apatite-bearing granitoids reported in [1]. This work suggests that halogens do not preferentially enrich in shallow plutonic or volcanic portions of a continental arc system and that mafic mineral phases likely serve as primary reservoirs of these elements in intermediate-to-felsic igneous rocks. These hypotheses will be further investigated in future work through in-situ analysis of halogen concentrations in crystals. [1] Teiber, Marks, Wenzel, Siebel, Altherr & Markl (2014), Chemical Geology, vol. 374–375, pp. 92–109, doi: 10.1016/j.chemgeo.2014.03.006more » « less
-
Parabens and salicylates were examined as disinfection byproduct (DBP) precursors to explore the possible influence of ipso substitution (i.e., halogen exchange) on the yield and speciation of trihalomethanes (THMs) formed during water chlorination. Substoichiometric conversion of C–Br bonds into C–Cl bonds was confirmed for several parabens and salicylates. The co-occurrence of (mono)brominated and nonhalogenated precursors in the presence of free chlorine (but in the absence of added Br–) generated polybrominated THMs, implicating ipso substitution. The THM molar yield, bromine incorporation, and bromine recovery from brominated and nonhalogenated precursor mixtures were commensurate with those observed from equimolar additions of NaBr, indicating efficient displacement of aromatic bromine by free chlorine followed by reincorporation of liberated HOBr into DBP precursors. The THM molar yield from brominated precursors was enhanced by a factor of ≤20 relative to that from nonhalogenated precursors. Trends in THM molar yields and bromine incorporation differed between brominated parabens and brominated salicylates, suggesting that the influence of ipso substitution on THM formation varies with the structure of the organic precursor. Collectively, these results provide new evidence of the often-overlooked role ipso substitution can play in promoting halogen exchange and bromine enrichment among DBPs in chlorinated waters.more » « less
An official website of the United States government

