Disinfection is an essential process for both potable water and wastewater treatment plants. However, disinfection byproducts (DBPs) like trihalomethanes (THMs), haloacetonitriles (HANs), and nitrosamines (NOAs) are formed when organic matter precursors react with disinfectants such as chlorine, chloramine, and ozone. Formation of DBPs is strongly associated with the type of water source, type of disinfectant, and organic matter concentration, which can have seasonal variation. In this study, water samples were collected from 20 different intra-watershed locations, which included urban runoff (with and without the influence of unsheltered homeless populations), wastewater effluent discharges, and a large, terminal reservoir that serves as the local drinking water source. Samples were collected on dry and rainy days, which represent seasonal samples. DBP formation potential (FP) tests were conducted at consistent pH, contact time, and temperature. THMs, NOAs, and HANs were analyzed by gas chromatography-mass spectrometry (GC-MS). The FP tests performed on these water samples revealed that chlorine formed the highest THM concentrations, while THM concentrations were low for the ozone FP test as expected. Chloramine produced the greatest HAN concentrations, with dichloroacetonitrile representing the highest concentration. With respect to sample type, more DBPs were formed at the non-wastewater-impacted runoff sites as compared to the wastewater effluent discharge sites. With respect to TOC levels, rain event samples for all locations had higher TOC concentrations compared to dry sampling days. Similarly, rain event samples showed increased DBP formation; a significant amount of precursors for THMs was found in runoff waters that were influenced by wastewater effluent discharges and unsheltered homeless locations (concentration of total THMs for chlorine FP test was >200 μg/L). Therefore, urban runoff waters should be considered as potential sources of DBP precursors to drinking water source waters, and runoff water is prone to seasonal variation.
more »
« less
Ipso Substitution of Aromatic Bromine in Chlorinated Waters: Impacts on Trihalomethane Formation
Parabens and salicylates were examined as disinfection byproduct (DBP) precursors to explore the possible influence of ipso substitution (i.e., halogen exchange) on the yield and speciation of trihalomethanes (THMs) formed during water chlorination. Substoichiometric conversion of C–Br bonds into C–Cl bonds was confirmed for several parabens and salicylates. The co-occurrence of (mono)brominated and nonhalogenated precursors in the presence of free chlorine (but in the absence of added Br–) generated polybrominated THMs, implicating ipso substitution. The THM molar yield, bromine incorporation, and bromine recovery from brominated and nonhalogenated precursor mixtures were commensurate with those observed from equimolar additions of NaBr, indicating efficient displacement of aromatic bromine by free chlorine followed by reincorporation of liberated HOBr into DBP precursors. The THM molar yield from brominated precursors was enhanced by a factor of ≤20 relative to that from nonhalogenated precursors. Trends in THM molar yields and bromine incorporation differed between brominated parabens and brominated salicylates, suggesting that the influence of ipso substitution on THM formation varies with the structure of the organic precursor. Collectively, these results provide new evidence of the often-overlooked role ipso substitution can play in promoting halogen exchange and bromine enrichment among DBPs in chlorinated waters.
more »
« less
- PAR ID:
- 10410199
- Date Published:
- Journal Name:
- Environmental Science & Technology
- ISSN:
- 0013-936X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The role of hydroxyl radicals (OH) as a daytime oxidant is well established on a global scale. In specific source regions, such as the marine boundary layer and polluted coastal cities, other daytime oxidants, such as chlorine atoms (Cl) and even bromine atoms (Br), may compete with OH for the oxidation of volatile organic compounds (VOCs) and/or enhance the overall oxidation capacity of the atmosphere. However, the number of studies investigating halogen-initiated secondary organic aerosol (SOA) formation is extremely limited, resulting in large uncertainties in these oxidative aging processes. Here, we characterized the chemical composition and yield of laboratory SOA generated in an oxidation flow reactor (OFR) from the OH and Cl oxidation of n -dodecane ( n -C 12 ) and toluene, and the OH, Cl, and Br oxidation of isoprene and α-pinene. In the OFR, precursors were oxidized using integrated OH, Cl, and Br exposures ranging from 3.1 × 10 10 to 2.3 × 10 12 , 6.1 × 10 9 to 1.3× 10 12 and 3.2 × 10 10 to 9.7 × 10 12 molecules cm −3 s −1 , respectively. Like OH, Cl facilitated multistep SOA oxidative aging over the range of OFR conditions that were studied. In contrast, the extent of Br-initiated SOA oxidative aging was limited. SOA elemental ratios and mass yields obtained in the OFR studies were comparable to those obtained from OH and Cl oxidation of the same precursors in environmental chamber studies. Overall, our results suggest that alkane, aromatic, and terpenoid SOA precursors are characterized by distinct OH- and halogen-initiated SOA yields, and that while Cl may enhance the SOA formation potential in regions influenced by biogenic and anthropogenic emissions, Br may have the opposite effect.more » « less
-
Sodium sulfite, sodium thiosulfate, and ascorbic acid are commonly used to quench free chlorine and free bromine in studies of disinfection byproducts (DBPs) in drinking water, wastewater, and recreational water. The reducing capabilities of these quenchers, however, can lead to the degradation of some redox-labile analytes. Ammonium chloride, another common quencher, converts free chlorine into monochloramine and is therefore inappropriate for analytes susceptible to chloramination. Herein, we demonstrate the utility of 1,3,5-trimethoxybenzene (TMB) as a quencher of free chlorine and free bromine. The reactivity of TMB toward free chlorine was characterized previously. The reactivity of TMB toward free bromine was quantified herein ( k HOBr,TMB = 3.35 × 10 6 M −1 s −1 ) using competition kinetics. To explore the feasibility of TMB serving as a free halogen quencher for kinetic experiments, chlorination of 2,4-dichlorophenol, bromination of anisole, and chlorination and bromination of dimethenamid-P were examined. Although TMB does not react with free chlorine or free bromine as quickly as do some (but not all) traditional quenchers, there was generally no significant difference in the experimental rate constants with TMB (relative to thiosulfate) as the quencher. By monitoring the chlorination and bromination products of TMB, free halogen residuals in quenched samples were quantified. Furthermore, TMB did not affect the stabilities of DBPs ( e.g. , chloropicrin and bromoacetonitriles) that otherwise degraded in the presence of traditional quenchers. TMB could, therefore, be an appropriate quencher of free chlorine and free bromine in aqueous halogenation experiments involving redox-labile analytes and/or when selective quantification of residual free halogens is desired.more » « less
-
Abstract Bromine is a key halogen element in the quantification of volcanic volatiles, but analytical difficulties in measuring its very low abundances have prevented progress in understanding its behavior and its role in volcanic emissions. We present a new data set of bromine, chlorine, and fluorine concentrations in melt inclusions and matrix glasses for two rhyolitic super-eruptions from the Toledo and Valles calderas, New Mexico, USA. We show that before eruption, Br and Cl were efficiently partitioned from the gas-saturated magma into a separate fluid phase, and we calculate the mass of halogens in the fluid phase. We further demonstrate that syn-eruptive magma degassing was negligible during the super-eruptions, so that the main source of halogen emissions must have been the fluid phase. If the fluid phase were erupted, the large mass of Br and Cl could have severely impacted the atmospheric chemistry upon eruption.more » « less
-
Hypohalous acids (HOX) are a class of molecules that play a key role in the atmospheric seasonal depletion of ozone and have the ability to form both hydrogen and halogen bonds. The interactions between the HOX monomers (X = F, Cl, Br) and water have been studied at the CCSD(T)/aug-cc-pVTZ level of theory with the spin free X2C-1e method to account for scalar relativistic effects. Focal point analysis was used to determine CCSDT(Q)/CBS dissociation energies. The anti hydrogen bonded dimers were found with interaction energies of −5.62 kcal mol −1 , −5.56 kcal mol −1 , and −4.97 kcal mol −1 for X = F, Cl, and Br, respectively. The weaker halogen bonded dimers were found to have interaction energies of −1.71 kcal mol −1 and −3.03 kcal mol −1 for X = Cl and Br, respectively. Natural bond orbital analysis and symmetry adapted perturbation theory were used to discern the nature of the halogen and hydrogen bonds and trends due to halogen substitution. The halogen bonds were determined to be weaker than the analogous hydrogen bonds in all cases but close enough in energy to be relevant, significantly more so with increasing halogen size.more » « less
An official website of the United States government

