skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning from Noisy Labels for Entity-Centric Information Extraction
Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resources, recent studies show that such labels take more training steps to be memorized and are more frequently forgotten than clean labels, therefore are identifiable in training. Motivated by such properties, we propose a simple co-regularization framework for entity-centric information extraction, which consists of several neural models with identical structures but different parameter initialization. These models are jointly optimized with the task-specific losses and are regularized to generate similar predictions based on an agreement loss, which prevents overfitting on noisy labels. Extensive experiments on two widely used but noisy benchmarks for information extraction, TACRED and CoNLL03, demonstrate the effectiveness of our framework. We release our code to the community for future research.  more » « less
Award ID(s):
2105329
PAR ID:
10312570
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent relation extraction (RE) works have shown encouraging improvements by conducting contrastive learning on silver labels generated by distant supervision before fine-tuning on gold labels. Existing methods typically assume all these silver labels are accurate and treat them equally; however, distant supervision is inevitably noisy–some silver labels are more reliable than others. In this paper, we propose fine-grained contrastive learning (FineCL) for RE, which leverages fine-grained information about which silver labels are and are not noisy to improve the quality of learned relationship representations for RE. We first assess the quality of silver labels via a simple and automatic approach we call “learning order denoising,” where we train a language model to learn these relations and record the order of learned training instances. We show that learning order largely corresponds to label accuracy–early-learned silver labels have, on average, more accurate labels than later-learned silver labels. Then, during pre-training, we increase the weights of accurate labels within a novel contrastive learning objective. Experiments on several RE benchmarks show that FineCL makes consistent and significant performance gains over state-of-the-art methods. 
    more » « less
  2. Label differential privacy is a relaxation of differential privacy for machine learning scenarios where the labels are the only sensitive information that needs to be protected in the training data. For example, imagine a survey from a participant in a university class about their vaccination status. Some attributes of the students are publicly available but their vaccination status is sensitive information and must remain private. Now if we want to train a model that predicts whether a student has received vaccination using only their public information, we can use label-DP. Recent works on label-DP use different ways of adding noise to the labels in order to obtain label-DP models. In this work, we present novel techniques for training models with label-DP guarantees by leveraging unsupervised learning and semi-supervised learning, enabling us to inject less noise while obtaining the same privacy, therefore achieving a better utility-privacy trade-off. We first introduce a framework that starts with an unsupervised classifier f0 and dataset D with noisy label set Y , reduces the noise in Y using f0 , and then trains a new model f using the less noisy dataset. Our noise reduction strategy uses the model f0 to remove the noisy labels that are incorrect with high probability. Then we use semi-supervised learning to train a model using the remaining labels. We instantiate this framework with multiple ways of obtaining the noisy labels and also the base classifier. As an alternative way to reduce the noise, we explore the effect of using unsupervised learning: we only add noise to a majority voting step for associating the learned clusters with a cluster label (as opposed to adding noise to individual labels); the reduced sensitivity enables us to add less noise. Our experiments show that these techniques can significantly outperform the prior works on label-DP. 
    more » « less
  3. Weakly supervised text classification methods typically train a deep neural classifier based on pseudo-labels. The quality of pseudo-labels is crucial to final performance but they are inevitably noisy due to their heuristic nature, so selecting the correct ones has a huge potential for performance boost. One straightforward solution is to select samples based on the softmax probability scores in the neural classifier corresponding to their pseudo-labels. However, we show through our experiments that such solutions are ineffective and unstable due to the erroneously high-confidence predictions from poorly calibrated models. Recent studies on the memorization effects of deep neural models suggest that these models first memorize training samples with clean labels and then those with noisy labels. Inspired by this observation, we propose a novel pseudo-label selection method LOPS that takes learning order of samples into consideration. We hypothesize that the learning order reflects the probability of wrong annotation in terms of ranking, and therefore, propose to select the samples that are learnt earlier. LOPS can be viewed as a strong performance-boost plug-in to most existing weakly-supervised text classification methods, as confirmed in extensive experiments on four real-world datasets. 
    more » « less
  4. Flood mapping on Earth imagery is crucial for disaster management, but its efficacy is hampered by the lack of high-quality training labels. Given high-resolution Earth imagery with coarse and noisy training labels, a base deep neural network model, and a spatial knowledge base with label constraints, our problem is to infer the true high-resolution labels while training neural network parameters. Traditional methods are largely based on specific physical properties and thus fall short of capturing the rich domain constraints expressed by symbolic logic. Neural-symbolic models can capture rich domain knowledge, but existing methods do not address the unique spatial challenges inherent in flood mapping on high-resolution imagery. To fill this gap, we propose a spatial-logic-aware weakly supervised learning framework. Our framework integrates symbolic spatial logic inference into probabilistic learning in a weakly supervised setting. To reduce the time costs of logic inference on vast high-resolution pixels, we propose a multi-resolution spatial reasoning algorithm to infer true labels while training neural network parameters. Evaluations of real-world flood datasets show that our model outperforms several baselines in prediction accuracy. The code is available at https://github.com/spatialdatasciencegroup/SLWSL. 
    more » « less
  5. Noisy labels are inevitable in large real-world datasets. In this work, we explore an area understudied by previous works --- how the network's architecture impacts its robustness to noisy labels. We provide a formal framework connecting the robustness of a network to the alignments between its architecture and target/noise functions. Our framework measures a network's robustness via the predictive power in its representations --- the test performance of a linear model trained on the learned representations using a small set of clean labels. We hypothesize that a network is more robust to noisy labels if its architecture is more aligned with the target function than the noise. To support our hypothesis, we provide both theoretical and empirical evidence across various neural network architectures and different domains. We also find that when the network is well-aligned with the target function, its predictive power in representations could improve upon state-of-the-art (SOTA) noisy-label-training methods in terms of test accuracy and even outperform sophisticated methods that use clean labels. 
    more » « less