skip to main content

Search for: All records

Award ID contains: 2105329

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Named geographic entities (geo-entities for short) are the building blocks of many geographic datasets. Characterizing geo-entities is integral to various application domains, such as geo-intelligence and map comprehension, while a key challenge is to capture the spatial-varying context of an entity. We hypothesize that we shall know the characteristics of a geo-entity by its surrounding entities, similar to knowing word meanings by their linguistic context. Accordingly, we propose a novel spatial language model, SpaBERT, which provides a general-purpose geo-entity representation based on neighboring entities in geospatial data. SpaBERT extends BERT to capture linearized spatial context, while incorporating a spatial coordinate embedding mechanism to preserve spatial relations of entities in the 2-dimensional space. SpaBERT is pretrained with masked language modeling and masked entity prediction tasks to learn spatial dependencies. We apply SpaBERT to two downstream tasks: geo-entity typing and geo-entity linking. Compared with the existing language models that do not use spatial context, SpaBERT shows significant performance improvement on both tasks. We also analyze the entity representation from SpaBERT in various settings and the effect of spatial coordinate embedding.
    Free, publicly-accessible full text available December 1, 2023
  2. Entity typing aims at predicting one or more words that describe the type(s) of a specific mention in a sentence. Due to shortcuts from surface patterns to annotated entity labels and biased training, existing entity typing models are subject to the problem of spurious correlations. To comprehensively investigate the faithfulness and reliability of entity typing methods, we first systematically define distinct kinds of model biases that are reflected mainly from spurious correlations. Particularly, we identify six types of existing model biases, including mention-context bias, lexical overlapping bias, named entity bias, pronoun bias, dependency bias, and overgeneralization bias. To mitigate model biases, we then introduce a counterfactual data augmentation method. By augmenting the original training set with their debiasedcounterparts, models are forced to fully comprehend sentences and discover the fundamental cues for entity typing, rather than relying on spurious correlations for shortcuts. Experimental results on the UFET dataset show our counterfactual data augmentation approach helps improve generalization of different entity typing models with consistently better performance on both the original and debiased test sets.
    Free, publicly-accessible full text available December 1, 2023
  3. Humans can seamlessly reason with circumstantial preconditions of commonsense knowledge. We understand that a glass is used for drinking water, unless the glass is broken or the water is toxic. Despite state-of-the-art (SOTA) language models’ (LMs) impressive performance on inferring commonsense knowledge, it is unclear whether they understand the circumstantial preconditions. To address this gap, we propose a novel challenge of reasoning with circumstantial preconditions. We collect a dataset, called PaCo, consisting of 12.4 thousand preconditions of commonsense statements expressed in natural language. Based on this dataset, we create three canonical evaluation tasks and use them to examine the capability of existing LMs to understand situational preconditions. Our results reveal a 10-30% gap between machine and human performance on our tasks, which shows that reasoning with preconditions is an open challenge.
    Free, publicly-accessible full text available December 1, 2023
  4. Relation extraction (RE) models have been challenged by their reliance on training data with expensive annotations. Considering that summarization tasks aim at acquiring concise expressions of synoptical information from the longer context, these tasks naturally align with the objective of RE, i.e., extracting a kind of synoptical information that describes the relation of entity mentions. We present SuRE, which converts RE into a summarization formulation. SuRE leads to more precise and resource-efficient RE based on indirect supervision from summarization tasks. To achieve this goal, we develop sentence and relation conversion techniques that essentially bridge the formulation of summarization and RE tasks. We also incorporate constraint decoding techniques with Trie scoring to further enhance summarization-based RE with robust inference. Experiments on three RE datasets demonstrate the effectiveness of SuRE in both full-dataset and low-resource settings, showing that summarization is a promising source of indirect supervision signals to improve RE models.
    Free, publicly-accessible full text available December 1, 2023
  5. Deep neural networks are often overparameterized and may not easily achieve model generalization. Adversarial training has shown effectiveness in improving generalization by regularizing the change of loss on top of adversarially chosen perturbations. The recently proposed sharpness-aware minimization (SAM) algorithm conducts adversarial weight perturbation, encouraging the model to converge to a flat minima. SAM finds a common adversarial weight perturbation per-batch. Although per-instance adversarial weight perturbations are stronger adversaries and can potentially lead to better generalization performance, their computational cost is very high and thus it is impossible to use per-instance perturbations efficiently in SAM. In this paper, we tackle this efficiency bottleneck and propose sharpness-aware minimization with dynamic reweighting (delta-SAM). Our theoretical analysis motivates that it is possible to approach the stronger, per-instance adversarial weight perturbations using reweighted per-batch weight perturbations. delta-SAM dynamically reweights perturbation within each batch according to the theoretically principled weighting factors, serving as a good approximation to per-instance perturbation. Experiments on various natural language understanding tasks demonstrate the effectiveness of delta-SAM.
    Free, publicly-accessible full text available December 1, 2023
  6. Abstractive summarization models typically learn to capture the salient information from scratch implicitly.Recent literature adds extractive summaries as guidance for abstractive summarization models to provide hints of salient content and achieves better performance.However, extractive summaries as guidance could be over strict, leading to information loss or noisy signals.Furthermore, it cannot easily adapt to documents with various abstractiveness.As the number and allocation of salience content pieces varies, it is hard to find a fixed threshold deciding which content should be included in the guidance.In this paper, we propose a novel summarization approach with a flexible and reliable salience guidance, namely SEASON (SaliencE Allocation as Guidance for Abstractive SummarizatiON).SEASON utilizes the allocation of salience expectation to guide abstractive summarization and adapts well to articles in different abstractiveness.Automatic and human evaluations on two benchmark datasets show that the proposed method is effective and reliable.Empirical results on more than one million news articles demonstrate a natural fifteen-fifty salience split for news article sentences, providing a useful insight for composing news articles.
    Free, publicly-accessible full text available December 1, 2023
  7. Sentence-level relation extraction (RE) aims at identifying the relationship between two entities in a sentence. Many efforts have been devoted to this problem, while the best performing methods are still far from perfect. In this paper, we revisit two problems that affect the performance of existing RE models, namely entity representation and noisy or ill-defined labels. Our improved RE baseline, incorporated with entity representations with typed markers, achieves an F1 of 74.6% on TACRED, significantly outperforms previous SOTA methods. Furthermore, the presented new baseline achieves an F1 of 91.1% on the refined Re-TACRED dataset, demonstrating that the pretrained language models (PLMs) achieve high performance on this task. We release our code to the community for future research.
    Free, publicly-accessible full text available November 1, 2023
  8. Reasoning with preconditions such as “glass can be used for drinking water unless the glass is shattered” remains an open problem for language models. The main challenge lies in the scarcity of preconditions data and the model’s lack of support for such reasoning. We present PInKS , Preconditioned Commonsense Inference with WeaK Supervision, an improved model for reasoning with preconditions through minimum supervision. We show, empirically and theoretically, that PInKS improves the results on benchmarks focused on reasoning with the preconditions of commonsense knowledge (up to 40% Macro-F1 scores). We further investigate PInKS through PAC-Bayesian informativeness analysis, precision measures, and ablation study.
    Free, publicly-accessible full text available November 1, 2023
  9. Riedel, Sebastian ; Choi, Eunsol ; Vlachos, Andreas (Ed.)
    Recently there is an increasing scholarly interest in time-varying knowledge graphs, or temporal knowledge graphs (TKG). Previous research suggests diverse approaches to TKG reasoning that uses historical information. However, less attention has been given to the hierarchies within such information at different timestamps. Given that TKG is a sequence of knowledge graphs based on time, the chronology in the sequence derives hierarchies between the graphs. Furthermore, each knowledge graph has its hierarchical level which may differ from one another. To address these hierarchical characteristics in TKG, we propose HyperVC, which utilizes hyperbolic space that better encodes the hierarchies than Euclidean space. The chronological hierarchies between knowledge graphs at different timestamps are represented by embedding the knowledge graphs as vectors in a common hyperbolic space. Additionally, diverse hierarchical levels of knowledge graphs are represented by adjusting the curvatures of hyperbolic embeddings of their entities and relations. Experiments on four benchmark datasets show substantial improvements, especially on the datasets with higher hierarchical levels.
    Free, publicly-accessible full text available November 1, 2023
  10. Current question answering (QA) systems primarily consider the single-answer scenario, where each question is assumed to be paired with one correct answer. However, in many real-world QA applications, multiple answer scenarios arise where consolidating answers into a comprehensive and non-redundant set of answers is a more efficient user interface. In this paper, we formulate the problem of answer consolidation, where answers are partitioned into multiple groups, each representing different aspects of the answer set. Then, given this partitioning, a comprehensive and non-redundant set of answers can be constructed by picking one answer from each group. To initiate research on answer consolidation, we construct a dataset consisting of 4,699 questions and 24,006 sentences and evaluate multiple models. Despite a promising performance achieved by the best-performing supervised models, we still believe this task has room for further improvements.