skip to main content

Title: Estrogenic Modulation of Retinal Sensitivity in Reproductive Female Túngara Frogs
Abstract Although mate searching behavior in female túngara frogs (Physalaemus pustulosus) is nocturnal and largely mediated by acoustic cues, male signaling includes visual cues produced by the vocal sac. To compensate for these low light conditions, visual sensitivity in females is modulated when they are in a reproductive state, as retinal thresholds are decreased. This study tested whether estradiol (E2) plays a role in this modulation. Female túngara frogs were injected with either human chorionic gonadotropin (hCG) or a combination of hCG and fadrozole. hCG induces a reproductive state and increases retinal sensitivity, while fadrozole is an aromatase inhibitor that blocks hCG-induced E2 synthesis. In an analysis of scotopic electroretinograms (ERGs), hCG treatment lowered the threshold for eliciting a b-wave response, whereas the addition of fadrozole abolished this effect, matching thresholds in non-reproductive saline-injected controls. This suggests that blocking E2 synthesis blocked the hCG-mediated reproductive modulation of retinal sensitivity. By implicating E2 in control of retinal sensitivity, our data add to growing evidence that the targets of gonadal steroid feedback loops include sensory receptor organs, where stimulus sensitivity may be modulated, rather than more central brain nuclei, where modulation may affect mechanisms involved in motivation.
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Integrative and Comparative Biology
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In seasonally breeding vertebrates, hormones coordinate changes in nervous system structure and function to facilitate reproductive readiness and success. Steroid hormones often exert their effects indirectly via regulation of neuromodulators, which in turn can coordinate the modulation of sensory input with appropriate motor output. Female plainfin midshipman fish (Porichthys notatus) undergo increased peripheral auditory sensitivity in time for the summer breeding season, improving their ability to detect mates, which is regulated by steroid hormones. Reproductive females also show differences in catecholaminergic innervation of auditory circuitry compared with winter, non-reproductive females as measured by tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholaminergic synthesis. Importantly, catecholaminergic input to the inner ear from a dopaminergic-specific forebrain nucleus is decreased in the summer and dopamine inhibits the sensitivity of the inner ear, suggesting that gonadal steroids may alter auditory sensitivity by regulating dopamine innervation. In this study, we gonadectomized non-reproductive females, implanted them with estradiol (E2) or testosterone (T), and measured TH immunoreactive (TH-ir) fibers in auditory nuclei where catecholaminergic innervation was previously shown to be seasonally plastic. We found that treatment with T, but not E2, reduced TH-ir innervation in the auditory hindbrain. T-treatment also reduced TH-ir fibers in the forebrain dopaminergicmore »cell group that projects to the inner ear, and likely to the auditory hindbrain. Higher T plasma in the treatment group was correlated with reduced-ir TH terminals in the inner ear. These T-treatment induced changes in TH-ir fibers mimic the seasonal downregulation of dopamine in the midshipman inner ear and provide evidence that steroid hormone regulation of peripheral auditory sensitivity is mediated, in part, by dopamine.« less
  2. Synopsis

    Animals use visual communication to convey crucial information about their identity, reproductive status, and sex. Plasticity in the auditory and olfactory systems has been well-documented, however, fewer studies have tested for plasticity in the visual system, a surprising detail since courtship and mate choice are largely dependent on visual signals across taxa. We previously found reproductive state-dependent plasticity in the eye of the highly social cichlid fish Astatotilapia burtoni. Male A. burtoni increase their courtship, including multicomponent visual displays, when around ovulated females, and ovulated females are more responsive to male visual courtship displays than non-ovulated females. Based on this, we hypothesized that ovulation status impacts visual capabilities in A. burtoni females. Using electroretinograms, we found that ovulated females had greater visual sensitivity at wavelengths corresponding to male courtship coloration compared with non-reproductively-receptive females. In addition, ovulated females had higher neural activation in the retina and higher mRNA expression levels of neuromodulatory receptors (e.g., sex-steroids; gonadotropins) in the eye than non-ovulated females. Here, we add to this body of work by testing the hypothesis that cone opsin expression changes with female reproductive state. Ovulated females had higher expression of short wavelength sensitive opsins (sws1, sws2a, sws2b) compared with mouthbroodingmore »females. Further, expression of sws2a, the most abundant opsin in the A. burtoni eye, positively correlated with levels of circulating 11-ketotestosterone and estradiol and estrogen, androgen, and gonadotropin system receptor expression in the eye in females. These data indicate that reproductive state-dependent plasticity also occurs at the level of photoreceptors, not just through modulation of visual signals at downstream retinal layers. Collectively, these data provide crucial evidence linking endocrine modulation of visual plasticity to mate choice behaviors in females.

    « less
  3. The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize “singing” males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms −2 ) that are 7–10 dB lower than nonreproductive females across a broad range of frequencies,more »which include the dominant harmonics of male advertisement calls. This enhanced auditory sensitivity of the utricle likely plays an essential role in facilitating midshipman social and reproductive acoustic communication. NEW & NOTEWORTHY In many animals, vocal-acoustic communication is fundamental for facilitating social behaviors. For the vocal plainfin midshipman fish, the detection and localization of social acoustic signals are critical to the species’ reproductive success. Here, we show that the utricle, an inner ear end organ often thought to primarily serve a vestibular function, serves an auditory function that is seasonally plastic and modulated by the animal’s reproductive state effectively enhancing auditory sensitivity to courting male advertisement calls.« less
  4. Abstract

    Light intensity varies 1 million‐fold between night and day, driving the evolution of eye morphology and retinal physiology. Despite extensive research across taxa showing anatomical adaptations to light niches, surprisingly few empirical studies have quantified the relationship between such traits and the physiological sensitivity to light. In this study, we employ a comparative approach in frogs to determine the physiological sensitivity of eyes in two nocturnal (Rana pipiens,Hyla cinerea) and two diurnal species (Oophaga pumilio,Mantella viridis), examining whether differences in retinal thresholds can be explained by ocular and cellular anatomy. Scotopic electroretinogram (ERG) analysis of relative b‐wave amplitude reveals 10‐ to 100‐fold greater light sensitivity in nocturnal compared to diurnal frogs. Ocular and cellular optics (aperture, focal length, and rod outer segment dimensions) were assessed via the Land equation to quantify differences in optical sensitivity. Variance in retinal thresholds was overwhelmingly explained by Land equation solutions, which describe the optical sensitivity of single rods. Thus, at the b‐wave, stimulus‐response thresholds may be unaffected by photoreceptor convergence (which create larger, combined collecting areas). Follow‐up experiments were conducted using photopic ERGs, which reflect cone vision. Under these conditions, the relative difference in thresholds was reversed, such that diurnalmore »species were more sensitive than nocturnal species. Thus, photopic data suggest that rod‐specific adaptations, not ocular anatomy (e.g., aperture and focal distance), drive scotopic thresholds differences. To the best of our knowledge, these data provide the first quantified relationship between optical and physiological sensitivity in vertebrates active in different light regimes.

    « less
  5. Synopsis Intra- and inter-sexual communications are vital to the survival and reproductive success of animals. In species that cycle in and out of breeding or other physiological condition, sensory function can be modulated to optimize communication at crucial times. Little is known, however, about how widespread this sensory plasticity is across taxa, whether it occurs in multiple senses or both sexes within a species, and what potential modulatory substances and substrates are involved. Thus, studying modulation of sensory communication in a single species can provide valuable insights for understanding how sensory abilities can be altered to optimize detection of salient signals in different sensory channels and social contexts. The African cichlid fish Astatotilapia burtoni uses multimodal communication in social contexts such as courtship, territoriality, and parental care and shows plasticity in sensory abilities. In this review, we synthesize what is known about how visual, acoustic, and chemosensory communication is used in A. burtoni in inter- and intra-specific social contexts, how sensory funtion is modulated by an individual’s reproductive, metabolic, and social state, and discuss evidence for plasticity in potential modulators that may contribute to changes in sensory abilities and behaviors. Sensory plasticity in females is primarily associated with the naturalmore »reproductive cycle and functions to improve detection of courtship signals (visual, auditory, chemosensory, and likely mechanosensory) from high-quality males for reproduction. Plasticity in male sensory abilities seems to function in altering their ability to detect the status of other males in the service of territory ownership and future reproductive opportunities. Changes in different classes of potential modulators or their receptors (steroids, neuropeptides, and biogenic amines) occur at both peripheral sensory organs (eye, inner ear, and olfactory epithelium) and central visual, olfactory, and auditory processing regions, suggesting complex mechanisms contributing to plasticity of sensory function. This type of sensory plasticity revealed in males and females of A. burtoni is likely more widespread among diverse animals than currently realized, and future studies should take an integrative and comparative approach to better understand the proximate and ultimate mechanisms modulating communication abilities across taxa.« less