skip to main content


Title: Genomics-driven discovery of chiral triscatechol siderophores with enantiomeric Fe( iii ) coordination
Ferric complexes of triscatechol siderophores may assume one of two enantiomeric configurations at the iron site. Chirality is known to be important in the iron uptake process, however an understanding of the molecular features directing stereospecific coordination remains ambiguous. Synthesis of the full suite of (DHB L/D Lys L/D Ser) 3 macrolactone diastereomers, which includes the siderophore cyclic trichrysobactin (CTC), enables the effects that the chirality of Lys and Ser residues exert on the configuration of the Fe( iii ) complex to be defined. Computationally optimized geometries indicate that the Λ/Δ configurational preferences are set by steric interactions between the Lys sidechains and the peptide backbone. The ability of each (DHB L/D Lys L/D Ser) 3 diastereomer to form a stable Fe( iii ) complex prompted a genomic search for biosynthetic gene clusters (BGCs) encoding the synthesis of these diastereomers in microbes. The genome of the plant pathogen Dickeya chrysanthemi EC16 was sequenced and the genes responsible for the biosynthesis of CTC were identified. A related but distinct BGC was identified in the genome of the opportunistic pathogen Yersinia frederiksenii ATCC 33641; isolation of the siderophore from Y. frederiksenii ATCC 33641, named frederiksenibactin (FSB), revealed the triscatechol oligoester, linear -(DHB L Lys L Ser) 3 . Circular dichroism (CD) spectroscopy establishes that Fe( iii )–CTC and Fe( iii )–FSB are formed in opposite enantiomeric configuration, consistent with the results of the ferric complexes of the cyclic (DHB L/D Lys L/D Ser) 3 diastereomers.  more » « less
Award ID(s):
1710761
NSF-PAR ID:
10312687
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
37
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The vast majority of bacteria require iron to grow. A significant iron acquisition strategy is the production of siderophores, which are secondary microbial metabolites synthesized to sequester iron(III). Siderophore structures encompass a variety of forms, of which highly modified peptidic siderophores are of interest herein. State‐of‐the‐art genome mining tools, such as antiSMASH (antibiotics & Secondary Metabolite Analysis SHell), hold the potential to predict and discover new peptidic siderophores, including a combinatoric suite of triscatechol siderophores framed on a triserine‐ester backbone of the general class, (DHB‐ l / d CAA‐ l Ser) 3 (CAA, cationic amino acid). Siderophores with l / d Arg, l / d Lys and l Orn, but not d Orn, were predicted in bacterial genomes. Fortuitously the d Orn siderophore was identified, yet its lack of prediction highlights the limitation of current genome mining tools. The full combinatoric suite of these siderophores, which form chiral iron(III) complexes, reveals stereospecific coordination chemistry encoded in microbial genomes. The chirality embedded in this suite of Fe(III)‐siderophores raises the question of whether the relevant siderophore‐mediated iron acquisition pathways are stereospecific and selective for ferric siderophore complexes of a defined configuration. 
    more » « less
  2. High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron( iv )–tosylimido complexes [Fe IV (NTs)(MePy 2 tacn)](OTf) 2 ( 1(IV)NTs ) and [Fe IV (NTs)(Me 2 (CHPy 2 )tacn)](OTf) 2 ( 2(IV)NTs ), (MePy 2 tacn = N -methyl- N , N -bis(2-picolyl)-1,4,7-triazacyclononane, and Me 2 (CHPy 2 )tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)NTs and 2(IV)NTs are rare examples of octahedral iron( iv )–imido complexes and are isoelectronic analogues of the recently described iron( iv )–oxo complexes [Fe IV (O)(L)] 2+ (L = MePy 2 tacn and Me 2 (CHPy 2 )tacn, respectively). 1(IV)NTs and 2(IV)NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1 H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [Fe III (HNTs)(L)] 2+ , 1(III)–NHTs (L = MePy 2 tacn) and 2(III)–NHTs (L = Me 2 (CHPy 2 )tacn) have been isolated after the decay of 1(IV)NTs and 2(IV)NTs in solution, spectroscopically characterized, and the molecular structure of [Fe III (HNTs)(MePy 2 tacn)](SbF 6 ) 2 determined by single crystal X-ray diffraction. Reaction of 1(IV)NTs and 2(IV)NTs with different p -substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)NTs and 2(IV)NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)NTs and 2(IV)NTs with hydrocarbons containing weak C–H bonds results in the formation of 1(III)–NHTs and 2(III)–NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction. 
    more » « less
  3. Abstract

    Amphi-enterobactin is an amphiphilic siderophore isolated from a variety of microbialVibriospecies. Like enterobactin, amphi-enterobactin is a triscatecholate siderophore; however, it is framed on an expanded tetralactone core comprised of fourl-Ser residues, of which onel-Ser is appended by a fatty acid and the remainingl-Ser residues are appended by 2,3-dihydroxybenzoate (DHB). Fragments of amphi-enterobactin composed of 2-Ser-1-DHB-FA and 3-Ser-2-DHB-FA have been identified in the supernatant ofVibrio campbelliispecies. The origin of these fragments has not been determined, although two distinct isomers could exist for 2-Ser-1-DHB-FA and three distinct isomers could exist for 3-Ser-2-DHB-FA. The fragments of amphi-enterobactin could originate from hydrolysis of the amphi-enterobactin macrolactone, or from premature release due to an inefficient biosynthetic pathway. Unique masses in the tandem MS analysis establish that certain fragments isolated from the culture supernatant must originate from hydrolysis of the amphi-enterobactin macrolactone, while others cannot be distinguished from premature release during biosynthesis or hydrolysis of amphi-enterobactin.

    Graphical abstract

     
    more » « less
  4. Genome mining of biosynthetic pathways streamlines discovery of secondary metabolites but can leave ambiguities in the predicted structures, which must be rectified experimentally. Through coupling the reactivity predicted by biosynthetic gene clusters with verified structures, the origin of the β-hydroxyaspartic acid diastereomers in siderophores is reported herein. Two functional subtypes of nonheme Fe(II)/α-ketoglutarate–dependent aspartyl β-hydroxylases are identified in siderophore biosynthetic gene clusters, which differ in genomic organization—existing either as fused domains (IβH Asp ) at the carboxyl terminus of a nonribosomal peptide synthetase (NRPS) or as stand-alone enzymes (TβH Asp )—and each directs opposite stereoselectivity of Asp β-hydroxylation. The predictive power of this subtype delineation is confirmed by the stereochemical characterization of β-OHAsp residues in pyoverdine GB-1, delftibactin, histicorrugatin, and cupriachelin. The l - threo (2 S , 3 S ) β-OHAsp residues of alterobactin arise from hydroxylation by the β-hydroxylase domain integrated into NRPS AltH, while l - erythro (2 S , 3 R ) β-OHAsp in delftibactin arises from the stand-alone β-hydroxylase DelD. Cupriachelin contains both l - threo and l - erythro β-OHAsp, consistent with the presence of both types of β-hydroxylases in the biosynthetic gene cluster. A third subtype of nonheme Fe(II)/α-ketoglutarate–dependent enzymes (IβH His ) hydroxylates histidyl residues with l - threo stereospecificity. A previously undescribed, noncanonical member of the NRPS condensation domain superfamily is identified, named the interface domain, which is proposed to position the β-hydroxylase and the NRPS-bound amino acid prior to hydroxylation. Through mapping characterized β-OHAsp diastereomers to the phylogenetic tree of siderophore β-hydroxylases, methods to predict β-OHAsp stereochemistry in silico are realized. 
    more » « less
  5. Most bacteria require iron to grow, yet soluble forms of iron are largely not available to microbes due to a combination of low solubility of ferric ion in the environment and sequestration in proteins and enzymes in living organisms. Microbes therefore compete for iron in various ways, including by production of siderophores, which are ligands with a high affinity for ferric ion and which facilitate transport of Fe(III) into and within bacteria. This review summarizes our work on the classes of siderophores isolated from open ocean isolates, including suites of amphiphilic siderophores that vary in the nature of the fatty acid appendages, photoreactive Fe(III)-siderophore complexes as a result of coordination to -hydroxy carboxylic acid groups, and a new series of tris catechol siderophores. 
    more » « less