skip to main content

This content will become publicly available on December 1, 2022

Title: Evolution of anisotropic turbulence in the fast and slow solar wind: Theory and Solar Orbiter measurements
Aims. Solar Orbiter (SolO) was launched on February 9, 2020, allowing us to study the nature of turbulence in the inner heliopshere. We investigate the evolution of anisotropic turbulence in the fast and slow solar wind in the inner heliosphere using the nearly incompressible magnetohydrodynamic (NI MHD) turbulence model and SolO measurements. Methods. We calculated the two dimensional (2D) and the slab variances of the energy in forward and backward propagating modes, the fluctuating magnetic energy, the fluctuating kinetic energy, the normalized residual energy, and the normalized cross-helicity as a function of the angle between the mean solar wind speed and the mean magnetic field ( θ UB ), and as a function of the heliocentric distance using SolO measurements. We compared the observed results and the theoretical results of the NI MHD turbulence model as a function of the heliocentric distance. Results. The results show that the ratio of 2D energy and slab energy of forward and backward propagating modes, magnetic field fluctuations, and kinetic energy fluctuations increases as the angle between the mean solar wind flow and the mean magnetic field increases from θ UB  = 0° to approximately θ UB  = 90° and then decreases as θ UB  → 180°. more » We find that solar wind turbulence is a superposition of the dominant 2D component and a minority slab component as a function of the heliocentric distance. We find excellent agreement between the theoretical results and observed results as a function of the heliocentric distance. « less
; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Astronomy & Astrophysics
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study anisotropic magnetohydrodynamic (MHD) turbulence in the slow solar wind measured by Parker Solar Probe (PSP) and Solar Orbiter (SolO) during its first orbit from the perspective of variance anisotropy and correlation anisotropy. We use the Belcher & Davis approach (M1) and a new method (M2) that decomposes a fluctuating vector into parallel and perpendicular fluctuating vectors. M1 and M2 calculate the transverse and parallel turbulence components relative to the mean magnetic field direction. The parallel turbulence component is regarded as compressible turbulence, and the transverse turbulence component as incompressible turbulence, which can be either Alfvénic or 2D.more »The transverse turbulence energy is calculated from M1 and M2, and the transverse correlation length from M2. We obtain the 2D and slab turbulence energy and the corresponding correlation lengths from those transverse turbulence components that satisfy an angle between the mean solar wind flow speed and mean magnetic field θ UB of either (i) 65° < θ UB < 115° or (ii) 0° < θ UB < 25° (155° < θ UB < 180°), respectively. We find that the 2D turbulence component is not typically observed by PSP near perihelion, but the 2D component dominates turbulence in the inner heliosphere. We compare the detailed theoretical results of a nearly incompressible MHD turbulence transport model with the observed results of PSP and SolO measurements, finding good agreement between them.« less
  2. A detailed study of solar wind turbulence throughout the heliosphere in both the upwind and downwind directions is presented. We use an incompressible magnetohydrodynamic (MHD) turbulence model that includes the effects of electrons, the separation of turbulence energy into proton and electron heating, the electron heat flux, and Coulomb collisions between protons and electrons. We derive expressions for the turbulence cascade rate corresponding to the energy in forward and backward propagating modes, the fluctuating kinetic and magnetic energy, the normalized cross-helicity, and the normalized residual energy, and calculate the turbulence cascade rate from 0.17 to 75 au in the upwindmore »and downwind directions. Finally, we use the turbulence transport models to derive cosmic ray (CR) parallel and perpendicular mean free paths (mfps) in the upwind and downwind heliocentric directions. We find that turbulence in the upwind and downwind directions is different, in part because of the asymmetric distribution of new born pickup ions in the two directions, which results in the CR mfps being different in the two directions. This is important for models that describe the modulation of cosmic rays by the solar wind.« less
  3. Abstract During its 10th orbit around the Sun, the Parker Solar Probe sampled two intervals where the local Alfvén speed exceeded the solar wind speed, lasting more than 10 hours in total. In this paper, we analyze the turbulence and wave properties during these periods. The turbulence is observed to be Alfvénic and unbalanced, dominated by outward-propagating modes. The power spectrum of the outward-propagating Elsässer z + mode steepens at high frequencies while that of the inward-propagating z − mode flattens. The observed Elsässer spectra can be explained by the nearly incompressible (NI) MHD turbulence model with both 2D andmore »Alfvénic components. The modeling results show that the z + spectra are dominated by the NI/slab component, and the 2D component mainly affects the z − spectra at low frequencies. An MHD wave decomposition based on an isothermal closure suggests that outward-propagating Alfvén and fast magnetosonic wave modes are prevalent in the two sub-Alfvénic intervals, while the slow magnetosonic modes dominate the super-Alfvénic interval in between. The slow modes occur where the wavevector is nearly perpendicular to the local mean magnetic field, corresponding to nonpropagating pressure-balanced structures. The alternating forward and backward slow modes may also be features of magnetic reconnection in the near-Sun heliospheric current sheet.« less
  4. Abstract The Parker Solar Probe (PSP) entered a region of sub-Alfvénic solar wind during encounter 8, and we present the first detailed analysis of low-frequency turbulence properties in this novel region. The magnetic field and flow velocity vectors were highly aligned during this interval. By constructing spectrograms of the normalized magnetic helicity, cross-helicity, and residual energy, we find that PSP observed primarily Alfvénic fluctuations, a consequence of the highly field-aligned flow that renders quasi-2D fluctuations unobservable to PSP. We extend Taylor’s hypothesis to sub- and super-Alfvénic flows. Spectra for the fluctuating forward and backward Elsässer variables ( z ± ,more »respectively) are presented, showing that z + modes dominate z − by an order of magnitude or more, and the z + spectrum is a power law in frequency (parallel wavenumber) f −3/2 ( k ∥ − 3 / 2 ) compared to the convex z − spectrum with f −3/2 ( k ∥ − 3 / 2 ) at low frequencies, flattening around a transition frequency (at which the nonlinear and Alfvén timescales are balanced) to f −1.25 at higher frequencies. The observed spectra are well fitted using a spectral theory for nearly incompressible magnetohydrodynamics assuming a wavenumber anisotropy k ⊥ ∼ k ∥ 3 / 4 , that the z + fluctuations experience primarily nonlinear interactions, and that the minority z − fluctuations experience both nonlinear and Alfvénic interactions with z + fluctuations. The density spectrum is a power law that resembles neither the z ± spectra nor the compressible magnetic field spectrum, suggesting that these are advected entropic rather than magnetosonic modes and not due to the parametric decay instability. Spectra in the neighboring modestly super-Alfvénic intervals are similar.« less
  5. Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identifymore »the circularly polarized plasma waves propagating near the proton gyrofrequency in both intervals. However, the sense of magnetic polarization in the spacecraft frame is observed to be opposite in the two intervals, although they both possess a sunward background magnetic field. The ion-scale plasma wave observed in the first interval can be either an inward-propagating ion cyclotron wave (ICW) or an outward-propagating fast-mode/whistler wave in the plasma frame, while in the second interval it can be explained as an outward ICW or inward fast-mode/whistler wave. The identification of the exact kinetic wave mode is more difficult to confirm owing to the limited plasma data resolution. The presence of ion-scale waves near the Sun suggests that ion cyclotron resonance may be one of the ubiquitous kinetic physical processes associated with small-scale magnetic fluctuations and kinetic instabilities in the inner heliosphere.« less