Aims. Solar Orbiter (SolO) was launched on February 9, 2020, allowing us to study the nature of turbulence in the inner heliopshere. We investigate the evolution of anisotropic turbulence in the fast and slow solar wind in the inner heliosphere using the nearly incompressible magnetohydrodynamic (NI MHD) turbulence model and SolO measurements. Methods. We calculated the two dimensional (2D) and the slab variances of the energy in forward and backward propagating modes, the fluctuating magnetic energy, the fluctuating kinetic energy, the normalized residual energy, and the normalized cross-helicity as a function of the angle between the mean solar wind speed and the mean magnetic field ( θ UB ), and as a function of the heliocentric distance using SolO measurements. We compared the observed results and the theoretical results of the NI MHD turbulence model as a function of the heliocentric distance. Results. The results show that the ratio of 2D energy and slab energy of forward and backward propagating modes, magnetic field fluctuations, and kinetic energy fluctuations increases as the angle between the mean solar wind flow and the mean magnetic field increases from θ UB = 0° to approximately θ UB = 90° and then decreases as θ UB → 180°. We find that solar wind turbulence is a superposition of the dominant 2D component and a minority slab component as a function of the heliocentric distance. We find excellent agreement between the theoretical results and observed results as a function of the heliocentric distance.
more »
« less
2D and Slab Turbulent Cascade Rates in the Inner Heliosphere
Abstract We present a theoretical and observational study of 2D and slab turbulence cascade (or heating) rates of transverse total turbulence energies, transverse cross helicity, transverse outward and inward Elsässer energy, transverse fluctuating magnetic energy density, and transverse fluctuating kinetic energy from the perihelion of the first Parker Solar Probe (PSP) orbit at ∼36.6 R ⊙ to Solar Orbiter (SolO) at ∼177 R ⊙ . We use the Adhikari et al. (2021a) approach to calculate the observed transverse turbulence heating rate, and the nearly incompressible magnetohydrodynamic (NI MHD) turbulence transport theory to calculate the theoretical turbulence cascade rate. We find from the 1 day long PSP measurements at 66.5 R ⊙ , and the SolO measurements at 176.3 R ⊙ that various transverse turbulent cascade rates increase with increasing angle, from 10° to 98°, between the mean solar wind speed and mean magnetic field ( θ UB ), indicating that the 2D heating rate is largest in the inner heliosphere. Similarly, we find from the theoretical and observed results that the 2D heating rate is larger than the slab heating rate as a function of heliocentric distance. We present a comparison between the theoretical and observed 2D and slab turbulence cascade rates as a function of heliocentric distance.
more »
« less
- Award ID(s):
- 1655280
- PAR ID:
- 10391862
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 938
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study anisotropic magnetohydrodynamic (MHD) turbulence in the slow solar wind measured by Parker Solar Probe (PSP) and Solar Orbiter (SolO) during its first orbit from the perspective of variance anisotropy and correlation anisotropy. We use the Belcher & Davis approach (M1) and a new method (M2) that decomposes a fluctuating vector into parallel and perpendicular fluctuating vectors. M1 and M2 calculate the transverse and parallel turbulence components relative to the mean magnetic field direction. The parallel turbulence component is regarded as compressible turbulence, and the transverse turbulence component as incompressible turbulence, which can be either Alfvénic or 2D. The transverse turbulence energy is calculated from M1 and M2, and the transverse correlation length from M2. We obtain the 2D and slab turbulence energy and the corresponding correlation lengths from those transverse turbulence components that satisfy an angle between the mean solar wind flow speed and mean magnetic field θ UB of either (i) 65° < θ UB < 115° or (ii) 0° < θ UB < 25° (155° < θ UB < 180°), respectively. We find that the 2D turbulence component is not typically observed by PSP near perihelion, but the 2D component dominates turbulence in the inner heliosphere. We compare the detailed theoretical results of a nearly incompressible MHD turbulence transport model with the observed results of PSP and SolO measurements, finding good agreement between them.more » « less
-
Abstract We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ ). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s −1 , and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s −1 . We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4 R ⊙ and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP.more » « less
-
Abstract We study the solar cycle dependence of various turbulence cascade rates based on the methodology developed by Adhikari et al. that utilizes Kolmogorov phenomenology. This approach is extended to derive the heating rates for an Iroshnikov–Kriachnan (IK) phenomenology. The observed turbulence cascade rates corresponding to the total turbulence energy, fluctuating magnetic energy density, fluctuating kinetic energy, and the normalized cross helicity are derived from WIND spacecraft plasma and magnetometer data from 1995 through 2020. We find that (i) the turbulence cascade rate derived from a Kolmogorov phenomenology and an IK phenomenology changes with solar cycle, such that the cascade rate is largest during solar maximum and smallest during solar minimum; (ii) the turbulence energy Kolmogorov cascade rate increases fromθUB(angle between mean magnetic field and velocity) = 0° to 90° and peaks nearθUB= 90°, and then decreases asθUBtends to 180°; (iii) the 2D turbulence heating rate is larger than the slab heating rate; (iv) the 2D and slab fluctuating magnetic energy density cascade rates are larger than the corresponding cascade rates of the fluctuating kinetic energy; and (v) the total turbulence energy cascade rate is positively correlated with the solar wind speed and temperature and the normalized cross-helicity cascade rate. Finally, we find that the total turbulent energy Kolmogorov cascade rate is larger than the IK cascade rate.more » « less
-
Abstract We study solar wind turbulence anisotropy in the inertial and energy-containing ranges in the inbound and outbound directions during encounters 1–9 by the Parker Solar Probe (PSP) for distances between ∼21 and 65R⊙. Using the Adhikari et al. approach, we derive theoretical equations to calculate the ratio between the 2D and slab fluctuating magnetic energy, fluctuating kinetic energy, and the outward/inward Elsässer energy in the inertial range. For this, in the energy-containing range, we assume a wavenumberk−1power law. In the inertial range, for the magnetic field fluctuations and the outward/inward Elsässer energy, we consider that (i) both 2D and slab fluctuations follow a power law ofk−5/3, and (ii) the 2D and slab fluctuations follow the power laws withk−5/3andk−3/2, respectively. For the velocity fluctuations, we assume that both the 2D and slab components follow ak−3/2power law. We compare the theoretical results of the variance anisotropy in the inertial range with the derived observational values measured by PSP, and find that the energy density of 2D fluctuations is larger than that of the slab fluctuations. The theoretical variance anisotropy in the inertial range relating to thek−5/3andk−3/2power laws between 2D and slab turbulence exhibits a smaller value in comparison to assuming the same power lawk−5/3between 2D and slab turbulence. Finally, the observed turbulence energy measured by PSP in the energy-containing range is found to be similar to the theoretical result of a nearly incompressible/slab turbulence description.more » « less
An official website of the United States government

