skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modernized uniform representation of carbohydrate molecules in the Protein Data Bank
Abstract Since 1971, the Protein Data Bank (PDB) has served as the single global archive for experimentally determined 3D structures of biological macromolecules made freely available to the global community according to the FAIR principles of Findability–Accessibility–Interoperability–Reusability. During the first 50 years of continuous PDB operations, standards for data representation have evolved to better represent rich and complex biological phenomena. Carbohydrate molecules present in more than 14,000 PDB structures have recently been reviewed and remediated to conform to a new standardized format. This machine-readable data representation for carbohydrates occurring in the PDB structures and the corresponding reference data improves the findability, accessibility, interoperability and reusability of structural information pertaining to these molecules. The PDB Exchange MacroMolecular Crystallographic Information File data dictionary now supports (i) standardized atom nomenclature that conforms to International Union of Pure and Applied Chemistry-International Union of Biochemistry and Molecular Biology (IUPAC-IUBMB) recommendations for carbohydrates, (ii) uniform representation of branched entities for oligosaccharides, (iii) commonly used linear descriptors of carbohydrates developed by the glycoscience community and (iv) annotation of glycosylation sites in proteins. For the first time, carbohydrates in PDB structures are consistently represented as collections of standardized monosaccharides, which precisely describe oligosaccharide structures and enable improved carbohydrate visualization, structure validation, robust quantitative and qualitative analyses, search for dendritic structures and classification. The uniform representation of carbohydrate molecules in the PDB described herein will facilitate broader usage of the resource by the glycoscience community and researchers studying glycoproteins.  more » « less
Award ID(s):
1832184
PAR ID:
10312715
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Glycobiology
Volume:
31
Issue:
9
ISSN:
1460-2423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary High‐quality microbiome research relies on the integrity, management and quality of supporting data. Currently biobanks and culture collections have different formats and approaches to data management. This necessitates a standard data format to underpin research, particularly in line with the FAIR data standards of findability, accessibility, interoperability and reusability. We address the importance of a unified, coordinated approach that ensures compatibility of data between that needed by biobanks and culture collections, but also to ensure linkage between bioinformatic databases and the wider research community. 
    more » « less
  2. Marine animal forests are benthic communities dominated by sessile suspension feeders (such as sponges, corals, and bivalves) able to generate three-dimensional (3D) frameworks with high structural complexity. The biodiversity and functioning of marine animal forests are strictly related to their 3D complexity. The present paper aims at providing new perspectives in underwater optical surveys. Starting from the current gaps in data collection and analysis that critically limit the study and conservation of marine animal forests, we discuss the main technological and methodological needs for the investigation of their 3D structural complexity at different spatial and temporal scales. Despite recent technological advances, it seems that several issues in data acquisition and processing need to be solved, to properly map the different benthic habitats in which marine animal forests are present, their health status and to measure structural complexity. Proper precision and accuracy should be chosen and assured in relation to the biological and ecological processes investigated. Besides, standardized methods and protocols are strictly necessary to meet the FAIR (findability, accessibility, interoperability, and reusability) data principles for the stewardship of habitat mapping and biodiversity, biomass, and growth data. 
    more » « less
  3. The National Science Foundation’s Arctic Data Center is the primary data repository for NSF-funded research conducted in the Arctic. There are major challenges in discovering and interpreting resources in a repository containing data as heterogeneous and interdisciplinary as those in the Arctic Data Center. This paper reports on advances in cyberinfrastructure at the Arctic Data Center that help address these issues by leveraging semantic technologies that enhance the repository’s adherence to the FAIR data principles and improve the Findability, Accessibility, Interoperability, and Reusability of digital resources in the repository. We describe the Arctic Data Center’s improvements. We use semantic annotation to bind metadata about Arctic data sets with concepts in web-accessible ontologies. The Arctic Data Center’s implementation of a semantic annotation mechanism is accompanied by the development of an extended search interface that increases the findability of data by allowing users to search for specific, broader, and narrower meanings of measurement descriptions, as well as through their potential synonyms. Based on research carried out by the DataONE project, we evaluated the potential impact of this approach, regarding the accessibility, interoperability, and reusability of measurement data. Arctic research often benefits from having additional data, typically from multiple, heterogeneous sources, that complement and extend the bases – spatially, temporally, or thematically – for understanding Arctic phenomena. These relevant data resources must be 'found', and 'harmonized' prior to integration and analysis. The findings of a case study indicated that the semantic annotation of measurement data enhances the capabilities of researchers to accomplish these tasks. 
    more » « less
  4. null (Ed.)
    ABSTRACT The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a ‘big data’ resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements. 
    more » « less
  5. The IceCube realtime alert system has been operating since 2016. It provides prompt alerts on high-energy neutrino events to the astroparticle physics community. The localization regions for the incoming direction of neutrinos are published through NASA's Gamma-ray Coordinate Network (GCN). The IceCube realtime system consists of infrastructure dedicated to the selection of alert events, the reconstruction of their topology and arrival direction, the calculation of directional uncertainty contours and the distribution of the event information through public alert networks. Using a message-based workflow management system, a dedicated software (SkyDriver) provides a representational state transfer (REST) interface to parallelized reconstruction algorithms. In this contribution, we outline the improvements of the internal infrastructure of the IceCube realtime system that aims to streamline the internal handling of neutrino events, their distribution to the SkyDriver interface, the collection of the reconstruction results as well as their conversion into human- and machine-readable alerts to be publicly distributed through different alert networks. An approach for the long-term storage and cataloging of alert events according to findability, accessibility, interoperability and reusability (FAIR) principles is outlined. 
    more » « less