skip to main content


Title: Turbulence and wave transmission at an ICME-driven shock observed by the Solar Orbiter and Wind
Aims. An interplanetary coronal mass ejection (ICME) event was observed by the Solar Orbiter at 0.8 AU on 2020 April 19 and by Wind at 1 AU on 2020 April 20. Futhermore, an interplanetary shock wave was driven in front of the ICME. Here, we focus on the transmission of the magnetic fluctuations across the shock and we analyze the characteristic wave modes of solar wind turbulence in the vicinity of the shock observed by both spacecraft. Methods. The observed ICME event is characterized by a magnetic helicity-based technique. The ICME-driven shock normal was determined by magnetic coplanarity method for the Solar Orbiter and using a mixed plasma and field approach for Wind. The power spectra of magnetic field fluctuations were generated by applying both a fast Fourier transform and Morlet wavelet analysis. To understand the nature of waves observed near the shock, we used the normalized magnetic helicity as a diagnostic parameter. The wavelet-reconstructed magnetic field fluctuation hodograms were used to further study the polarization properties of waves. Results. We find that the ICME-driven shock observed by Solar Orbiter and Wind is a fast, forward oblique shock with a more perpendicular shock angle at the Wind position. After the shock crossing, the magnetic field fluctuation power increases. Most of the magnetic field fluctuation power resides in the transverse fluctuations. In the vicinity of the shock, both spacecraft observe right-hand polarized waves in the spacecraft frame. The upstream wave signatures fall within a relatively broad and low frequency band, which might be attributed to low frequency MHD waves excited by the streaming particles. For the downstream magnetic wave activity, we find oblique kinetic Alfvén waves with frequencies near the proton cyclotron frequency in the spacecraft frame. The frequency of the downstream waves increases by a factor of ∼7–10 due to the shock compression and the Doppler effect.  more » « less
Award ID(s):
1655280
NSF-PAR ID:
10312731
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
656
ISSN:
0004-6361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study interplanetary coronal mass ejections (ICMEs) measured by probes at different heliocentric distances (0.3–1 AU) to investigate the propagation of ICMEs in the inner heliosphere and determine how the generic features of ICMEs change with heliospheric distance. Using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER), Venus Express and ACE spacecraft, we analyze with the superposed epoch technique the profiles of ICME substructures, namely, the sheath and the magnetic ejecta. We determine that the median magnetic field magnitude in the sheath correlates well with ICME speeds at 1 AU, and we use this proxy to order the ICMEs at all spacecraft. We then investigate the typical ICME profiles for three categories equivalent to slow, intermediate, and fast ICMEs. Contrary to fast ICMEs, slow ICMEs have a weaker solar wind field at the front and a more symmetric magnetic field profile. We find the asymmetry to be less pronounced at Earth than at Mercury, indicating a relaxation taking place as ICMEs propagate. We also find that the magnetic field intensities in the wake region of the ICMEs do not go back to the pre‐ICME solar wind intensities, suggesting that the effects of ICMEs on the ambient solar wind last longer than the duration of the transient event. Such results provide an indication of physical processes that need to be reproduced by numerical simulations of ICME propagation. The samples studied here will be greatly improved by future missions dedicated to the exploration of the inner heliosphere, such as Parker Solar Probe and Solar Orbiter.

     
    more » « less
  2. Abstract

    Small-amplitude fluctuations in the magnetized solar wind are measured typically by a single spacecraft. In the magnetohydrodynamics (MHD) description, fluctuations are typically expressed in terms of the fundamental modes admitted by the system. An important question is how to resolve an observed set of fluctuations, typically plasma moments such as the density, velocity, pressure, and magnetic field fluctuations, into their constituent fundamental MHD modal components. Despite its importance in understanding the basic elements of waves and turbulence in the solar wind, this problem has not yet been fully resolved. Here, we introduce a new method that identifies between wave modes and advected structures such as magnetic islands or entropy modes and computes the phase information associated with the eligible MHD modes. The mode-decomposition method developed here identifies the admissible modes in an MHD plasma from a set of plasma and magnetic field fluctuations measured by a single spacecraft at a specific frequency and an inferred wavenumberkm. We present data from three typical intervals measured by the Wind and Solar Orbiter spacecraft at ∼1 au and show how the new method identifies both propagating (wave) and nonpropagating (structures) modes, including entropy and magnetic island modes. This allows us to identify and characterize the separate MHD modes in an observed plasma parcel and to derive wavenumber spectra of entropic density, fast and slow magnetosonic, Alfvénic, and magnetic island fluctuations for the first time. These results help identify the fundamental building blocks of turbulence in the magnetized solar wind.

     
    more » « less
  3. Abstract

    The radial evolution of interplanetary coronal mass ejections (ICMEs) is dependent on their interaction with the ambient medium, which causes ICME erosion and affects their geoefficiency. Here, an ICME front boundary, which separates the confined ejecta from the mixed, interacted sheath–ejecta plasma upstream, is analyzed in a multipoint study examining the ICME at 1 au on 2020 April 20. A bifurcated current sheet, highly filamented currents, and a two-sided jet were observed at the boundary. The two-sided jet, which was recorded for the first time for a magnetic shear angle <40°, implies multiple (patchy) reconnection sites associated with the ICME erosion. The reconnection exhaust exhibited fine structure, including multistep magnetic field rotation and localized structures that were measured only by separate Cluster spacecraft with the mission inter-spacecraft separation of 0.4–1.6RE. The mixed plasma upstream of the boundary with a precursor at 0.8 au lacked coherency at 1 au and exhibited substantial variations of southward magnetic fields over radial (transverse) distances of 41–237RE(114RE). This incoherence demonstrates the need for continuous (sub)second-resolution plasma and field measurements at multiple locations in the solar wind to adequately address the spatiotemporal structure of ICMEs and to produce accurate space weather predictions.

     
    more » « less
  4. Abstract Three-dimensional hybrid kinetic simulations are conducted with particle protons and warm fluid electrons. Alfvénic fluctuations initialized at large scales and with wavevectors that are highly oblique with respect to the background magnetic field evolve into a turbulent energy cascade that dissipates at proton kinetic scales. Accompanying the proton scales is a spectral magnetic helicity signature with a peak in magnitude. A series of simulation runs are made with different large-scale cross helicity and different initial fluctuation phases and wavevector configurations. From the simulations a so-called total magnetic helicity peak is evaluated by summing contributions at a wavenumber perpendicular to the background magnetic field. The total is then compared with the reduced magnetic helicity calculated along spacecraft-like trajectories through the simulation box. The reduced combines the helicity from different perpendicular wavenumbers and depends on the sampling direction. The total is then the better physical quantity to characterize the turbulence. On average the ratio of reduced to total is 0.45. The total magnetic helicity and the reduced magnetic helicity show intrinsic variability based on initial fluctuation conditions. This variability can contribute to the scatter found in the observed distribution of solar wind reduced magnetic helicity as a function of cross helicity. 
    more » « less
  5. Abstract The Earth’s magnetosphere and its bow shock, which is formed by the interaction of the supersonic solar wind with the terrestrial magnetic field, constitute a rich natural laboratory enabling in situ investigations of universal plasma processes. Under suitable interplanetary magnetic field conditions, a foreshock with intense wave activity forms upstream of the bow shock. So-called 30 s waves, named after their typical period at Earth, are the dominant wave mode in the foreshock and play an important role in modulating the shape of the shock front and affect particle reflection at the shock. These waves are also observed inside the magnetosphere and down to the Earth’s surface, but how they are transmitted through the bow shock remains unknown. By combining state-of-the-art global numerical simulations and spacecraft observations, we demonstrate that the interaction of foreshock waves with the shock generates earthward-propagating, fast-mode waves, which reach the magnetosphere. These findings give crucial insight into the interaction of waves with collisionless shocks in general and their impact on the downstream medium. 
    more » « less