skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 26, 2026

Title: Magnetohydrodynamic Simulation of a Coronal Mass Ejection Observed during the Near-radial Alignment of Solar Orbiter and Earth
Abstract Interplanetary coronal mass ejections (ICMEs) are the primary sources of geomagnetic storms at Earth. The negative out-of-ecliptic component (Bz) of magnetic field in the ICME or its associated sheath region is necessary for it to be geoeffective. For this reason, magnetohydrodynamic simulations of CMEs containing data-constrained flux ropes are more suitable for forecasting their geoeffectiveness as compared to hydrodynamic models of the CME. ICMEs observed in situ by radially aligned spacecraft can provide an important setup to validate the physics-based heliospheric modeling of CMEs. In this work, we use the constant-turn flux rope (CTFR) model to study an ICME that was observed in situ by Solar Orbiter (SolO) and at Earth, when they were in a near-radial alignment. This was a stealth CME that erupted on 2020 April 14 and reached Earth on 2020 April 20 with a weak shock and a smoothly rotating magnetic field signature. We found that the CTFR model was able to reproduce the rotating magnetic field signature at both SolO and Earth with very good accuracy. The simulated ICME arrived 5 hr late at SolO and 5 hr ahead at Earth, when compared to the observed ICME. We compare the propagation of the CME front through the inner heliosphere using synthetic J-maps and those observed in the heliospheric imager data and discuss the role of incorrect ambient solar wind background on kinematics of the simulated CME. This study supports the choice of the CTFR model for reproducing the magnetic field of ICMEs.  more » « less
Award ID(s):
2028154
PAR ID:
10599042
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
981
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
53
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.Coronal mass ejections (CMEs) are large-scale structures of magnetized plasma that erupt from the corona into interplanetary space. The launch of Solar Orbiter (SolO) in 2020 enables in situ measurements of CMEs in the innermost heliosphere, at such distances where CMEs can be observed remotely within the inner field of view of heliospheric imagers (HIs). It thus provides the opportunity for investigations into the correspondence of the CME substructures measured in situ and observed remotely. We studied a CME that started on 2022 March 10 and was measured in situ by SolO at ∼0.44 au. Aims.Combining remote observations of CMEs from wide-angle imagers and in situ measurements in the innermost heliosphere allows us to compare CME properties derived through both techniques, validate the estimates, and better understand CME evolution, specifically the size and radial expansion, within 0.5 au. Methods.We compared the evolution of different CME substructures observed in images from the HIs on board the Ahead Solar Terrestrial Relations Observatory (STEREO-A) and the CME signatures measured in situ by SolO. The CME is found to possess a density enhancement at its rear edge in both remote and in situ observations, which validates the use of the signature of density enhancement following the CMEs to accurately identify the CME rear edge. We also estimated and compared the radial size and radial expansion speed of different substructures in both observations. Results.The evolution of the CME front and rear edges in remote images is consistent with the in situ CME measurements. The radial expansion (i.e., radial size and radial expansion speed) of the whole CME structure consisting of the magnetic ejecta and the sheath is consistent with the in situ estimates obtained at the same time from SolO. However, we do not find such consistencies for the magnetic ejecta region inside the CME because it is difficult to identify the magnetic ejecta edges in the remote images. 
    more » « less
  2. Context.In the scope of space weather forecasting, it is crucial to be able to more reliably predict the arrival time, speed, and magnetic field configuration of coronal mass ejections (CMEs). From the time a CME is launched, the dominant factor influencing all of the above is the interaction of the interplanetary CME (ICME) with the ambient plasma and interplanetary magnetic field. Aims.Due to a generally anisotropic heliosphere, differently oriented ICMEs may interact differently with the ambient plasma and interplanetary magnetic field, even when the initial eruption conditions are similar. For this, we examined the possible link between the orientation of an ICME and its propagation in the heliosphere (up to 1 AU). Methods.We investigated 31 CME-ICME associations in the period from 1997 to 2018. The CME orientation in the near-Sun environment was determined using an ellipse-fitting technique applied to single-spacecraft data from SOHO/LASCO C2 and C3 coronagraphs. In the near-Earth environment, we obtained the orientation of the corresponding ICME using in situ plasma and magnetic field data. The shock orientation and nonradial flows in the sheath region for differently oriented ICMEs were investigated. In addition, we calculated the ICME transit time to Earth and drag parameter to probe the overall drag force for differently oriented ICMEs. The drag parameter was calculated using the reverse modeling procedure with the drag-based model. Results.We found a significant difference in nonradial flows for differently oriented ICMEs, whereas a significant difference in drag for differently oriented ICMEs was not found. 
    more » « less
  3. Abstract Simultaneous in situ measurements of coronal mass ejections (CMEs), including both plasma and magnetic field, by two spacecraft in radial alignment have been extremely rare. Here, we report on one such CME measured by Solar Orbiter (SolO) and Wind on 2021 November 3–5, while the spacecraft were radially separated by a heliocentric distance of 0.13 au and angularly by only 2.2°. We focus on the magnetic cloud (MC) part of the CME. We find notable changes in theRandNmagnetic field components and in the speed profiles inside the MC between SolO and Wind. We observe a greater speed at the spacecraft farther away from the Sun without any clear compression signatures. Since the spacecraft are close to each other and computing fast magnetosonic wave speed inside the MC, we rule out temporal evolution as the reason for the observed differences, suggesting that spatial variations over 2.2° of the MC structure are at the heart of the observed discrepancies. Moreover, using shock properties at SolO, we forecast an arrival time 2 hr 30 minutes too late for a shock that is just 5 hr 31 minutes away from Wind. Predicting the north–south component of the magnetic field at Wind from SolO measurements leads to a relative error of 55%. These results show that even angular separations as low as 2.2° (or 0.03 au in arc length) between spacecraft can have a large impact on the observed CME properties, which raises the issue of the resolutions of current CME models, potentially affecting our forecasting capabilities. 
    more » « less
  4. Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. Aims. This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7−8, 2020, from both an observational and a modeling perspective. The aim is to provide a full description of those events, their mutual interaction, and their coupling with the ambient solar wind and the HCS. Methods. Data acquired by the MAG magnetometer, the Energetic Particle Detector suite, and the Radio and Plasma Waves instrument are used to provide information on the ICMEs’ magnetic topology configuration, their magnetic connectivity to the Sun, and insights into the heliospheric plasma environment where they travel, respectively. On the modeling side, the Heliospheric Upwind eXtrapolation model, the 3D COronal Rope Ejection technique, and the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) tool are used to complement Solar Orbiter observations of the ambient solar wind and ICMEs, and to simulate the evolution and interaction of the ejecta in the inner heliosphere, respectively. Results. Both data analysis and numerical simulations indicate that the passage of two distinct, dynamically and magnetically interacting (via magnetic reconnection processes) ICMEs at Solar Orbiter is a possible scenario, supported by the numerous similarities between EUHFORIA time series at Solar Orbiter and Solar Orbiter data. Conclusions. The combination of in situ measurements and numerical simulations (together with remote sensing observations of the corona and inner heliosphere) will significantly lead to a deeper understanding of the physical processes occurring during the CME-CME interaction. 
    more » « less
  5. Context.Predicting geomagnetic events starts with an understanding of the Sun-Earth chain phenomena in which (interplanetary) coronal mass ejections (CMEs) play an important role in bringing about intense geomagnetic storms. It is not always straightforward to determine the solar source of an interplanetary coronal mass ejection (ICME) detected at 1 au. Aims.The aim of this study is to test by a magnetohydrodynamic (MHD) simulation the chain of a series of CME events detected from L1 back to the Sun in order to determine the relationship between remote and in situ CMEs. Methods.We analysed both remote-sensing observations and in situ measurements of a well-defined magnetic cloud (MC) detected at L1 occurring on 28 June 2013. The MHD modelling is provided by the 3D MHD European Heliospheric FORecasting Information Asset (EUHFORIA) simulation model. Results.After computing the background solar wind, we tested the trajectories of six CMEs occurring in a time window of five days before a well-defined MC at L1 that may act as the candidate of the MC. We modelled each CME using the cone model. The test involving all the CMEs indicated that the main driver of the well-defined, long-duration MC was a slow CME. For the corresponding MC, we retrieved the arrival time and the observed proton density. Conclusions.EUHFORIA confirms the results obtained in the George Mason data catalogue concerning this chain of events. However, their proposed solar source of the CME is disputable. The slow CME at the origin of the MC could have its solar source in a small, emerging region at the border of a filament channel at latitude and longitude equal to +14 degrees. 
    more » « less