skip to main content


Title: Optimal Planting Distance in a Simple Model of Habitat Restoration With an Allee Effect
Ecological restoration is emerging as an important strategy to improve the recovery of degraded lands and to combat habitat and biodiversity loss worldwide. One central unresolved question revolves around the optimal spatial design for outplanted propagules that maximizes restoration success. Essentially, two contrasting paradigms exist: the first aims to plant propagules in dispersed arrangements to minimize competitive interactions. In contrast, ecological theory and recent field experiments emphasize the importance of positive species interactions, suggesting instead clumped planting configurations. However, planting too many propagules too closely is likely to waste restoration resources as larger clumps have less edges and have relatively lower spread rates. Thus, given the constraint of limited restoration efforts, there should be an optimal planting distance that both is able to harness positive species interactions but at the same time maximizes spread in the treated area. To explore these ideas, here we propose a simple mathematical model that tests the influence of positive species interactions on the optimal design of restoration efforts. We model the growth and spatial spread of a population starting from different initial conditions that represent either clumped or dispersed configurations of planted habitat patches in bare substrate. We measure the spatio-temporal development of the population, its relative and absolute growth rates as well as the time-discounted population size and its dependence on the presence of an Allee effect. Finally, we assess whether clumped or dispersed configurations perform better in our models and qualitatively compare the simulation outcomes with a recent wetland restoration experiment in a coastal wetland. Our study shows that intermediate clumping is likely to maximize plant spread under medium and high stress conditions (high occurrence of positive interactions) while dispersed designs maximize growth under low stress conditions where competitive interactions dominate. These results highlight the value of mathematical modeling for optimizing the efficiency of restoration efforts and call for integration of this theory into practice.  more » « less
Award ID(s):
1832178
NSF-PAR ID:
10312735
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
7
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Common practices for invasive species control and management include physical, chemical, and biological approaches. The first two approaches have clear limitations and may lead to unintended (negative) consequences, unless carefully planned and implemented. For example, physical removal rarely completely eradicates the targeted invasive species and can cause disturbances that facilitate new invasions by nonnative species from nearby habitats. Chemical treatments can harm native, and especially rare, species through unanticipated side effects. Biological methods may be classified as biocontrol and the ecological approach. Similar to physical and chemical methods, biocontrol also has limitations and sometimes leads to unintended consequences. Therefore, a relatively safer and more practical choice may be the ecological approach, which has two major components: (1) restoration of native species and (2) biomass manipulation of the restored community, such as selective grazing or prescribed burning (to achieve and maintain viable population sizes). Restoration requires well-planned and implemented planting designs that consider alpha-, beta-, and gamma-diversity and the abundance of native and invasive component species at local, landscape, and regional levels. Given the extensive destruction or degradation of natural habitats around the world, restoration could be most effective for enhancing ecosystem resilience and resistance to biotic invasions. At the same time, ecosystems in human-dominated landscapes, especially those newly restored, require close monitoring and careful intervention (e.g., through biomass manipulation), especially when successional trajectories are not moving as intended. Biomass management frequently uses prescribed burning, grazing, harvesting, and thinning to maintain overall ecosystem health and sustainability. Thus, the resulting optimal, balanced, and relatively stable ecological conditions could more effectively limit the spread and establishment of invasive species. Here we review the literature (especially within the last decade) on ecological approaches that involve biodiversity, biomass, and productivity, three key community/ecosystem variables that reciprocally influence one another. We focus on the common and most feasible ecological practices that can aid in resisting new invasions and/or suppressing the dominance of existing invasive species. We contend that, because of the strong influences from neighboring areas (i.e., as exotic species pools), local restoration and management efforts in the future need to consider the regional context and projected climate changes. 
    more » « less
  2. Abstract

    Habitat‐suitability indices (HSI) have been employed in restoration to identify optimal sites for planting native species. Often, HSI are based on abiotic variables and do not include biotic interactions, even though similar abiotic conditions can favor both native and nonnative species. Biotic interactions such as competition may be especially important in invader‐dominated habitats because invasive species often have fast growth rates and can exploit resources quickly. In this study, we test the utility of an HSI of microtopography derived from airborne LiDAR to predict post‐disturbance recovery and native planting success in native shrub‐dominated and nonnative, invasive grass‐dominated dryland habitats in Hawaiʻi. The HSI uses high‐resolution digital terrain models to classify sites' microtopography as high, medium, or low suitability, based on wind exposure and topographic position. We used a split‐plot before‐after‐control‐impact design to implement a disturbance experiment within native shrub (Dodonaea viscosa) and nonnative, invasive grass (Cenchrus clandestinus)‐dominated ecosystems across three microtopography categories. In contrast to previous studies using the same HSI, we found that microtopography was a poor predictor of pre‐disturbance conditions for soil nutrients, organic matter content, or foliar C:N, within bothDodonaeaandCenchrusvegetation types. In invader‐dominatedCenchrusplots, microtopography helped predict cover, but not as expected (i.e., highest cover would be in high‐suitability plots):D. viscosahad the greatest cover in low‐suitability andC. clandestinushad the greatest cover in medium‐suitability plots. Similarly, in native‐dominatedDodonaeaplots, microtopography was a poor predictor ofD. viscosa,C. clandestinus, and total plant cover. Although we found some evidence that microtopography helped inform post‐disturbance plant recovery ofD. viscosaand total plant cover, vegetation type was a more important predictor. Important for considering the success of plantings, percent cover ofD. viscosadecreased while percent cover ofC. clandestinusincreased within both vegetation types 20 months after disturbance. Our results are evidence that HSIs based on topographic features may prove most useful for choosing planting sites in harsh habitats or those already dominated by native species. In more productive habitats, competition from resident species may offset any benefits gained from “better” suitability sites.

     
    more » « less
  3. Abstract

    Ecological restoration is beneficial to ecological communities in this era of large‐scale landscape change and ecological disruption. However, restoration outcomes are notoriously variable, which makes fine‐scale decision‐making challenging. This is true for restoration efforts that follow large fires, which are increasingly common as the climate changes.

    Post‐fire restoration efforts, like tree planting and seeding have shown mixed success, though the causes of the variation in restoration outcomes remain unclear. Abiotic factors such as elevation and fire severity, as well as biotic factors, such as residual canopy cover and abundance of competitive understorey grasses, can vary across a burned area and may all influence the success of restoration efforts to re‐establish trees following forest fires.

    We examined the effect of these factors on the early seedling establishment of a tree species—māmane (Sophora chrysophylla)—in a subtropical montane woodland in Hawaiʻi. Following a human‐caused wildfire, we sowed seeds of māmane as part of a restoration effort. We co‐designed a project to examine māmane seedling establishment.

    We found that elevation was of overriding importance, structuring total levels of plant establishment, with fewer seedlings establishing at higher elevations. Residual canopy cover was positively correlated with seedling establishment, while cover by invasive, competitive understorey grasses very weakly positively correlated with increased seedling establishment.

    Our results point to specific factors structuring plant establishment following a large fire and suggest additional targeted restoration actions within this subtropical system. For example, if greater native woody recruitment is a management goal, then actions could include targeted seed placement at lower elevations where establishment is more likely, increased seeding densities at high elevation where recruitment rates are lower, and/or invasive grass removal prior to seeding. Such actions may result in faster native ecosystem recovery, which is a goal of local land managers.

     
    more » « less
  4. Abstract

    Ecological restoration outcomes are highly variable, undermining efforts to recover biodiversity and ecosystem functions. One poorly understood source of variability is ‘year effects’—interannual variation in environmental conditions during the first year of restoration that alter successional trajectories of plant communities.

    There have been few experimental tests disentangling planting years from other differences among restoration projects (e.g. edaphic conditions, restoration approach), particularly those resolving mechanisms for year effects such as planting‐year rainfall. Moreover, past year effect studies focused almost exclusively on species‐level consequences. Therefore, the extent to which year effects influence the traits of communities is unknown.

    To address these gaps and provide a mechanistic test of how precipitation contributes to year effects, we conducted an experiment where we manipulated rainfall (drought, average and high levels) during the first growing season, replicated across three establishment year treatments to disentangle the effects of precipitation from other drivers of year effects. In each establishment year, we seeded the same species mix to initiate grassland restoration. We then surveyed plant community compositions annually for 5 years to quantify trait responses of restored communities to planting year rainfall.

    We found that variation in planting‐year precipitation altered community assembly trajectories by influencing community‐weighted mean (CWM) trait composition, and these effects persisted for at least 5 years. Over time, CWM specific leaf area and CWM seed mass decreased and CWM plant height increased. The effect of age on CWM plant height was stronger in plots that received mean and high watering treatments compared to drought treatments. This effect was also observed for CWM seed mass, albeit weaker.

    We also found some evidence for planting year effects unrelated to planting‐year rainfall for the three CWM traits, illustrating how interannually varying environmental conditions besides rainfall can generate persistent year effect on plant communities through their traits.

    Synthesis and applications. Our results provide evidence for planting year rainfall interacting with community assembly to alter the functional trait composition of restored grasslands. This suggests that interannual variation in rainfall during establishment is an important source of divergent biodiversity and functional outcomes in restored grasslands.

     
    more » « less
  5. Abstract Restoration is becoming a vital tool to counteract coastal ecosystem degradation. Modifying transplant designs of habitat-forming organisms from dispersed to clumped can amplify coastal restoration yields as it generates self-facilitation from emergent traits, i.e. traits not expressed by individuals or small clones, but that emerge in clumped individuals or large clones. Here, we advance restoration science by mimicking key emergent traits that locally suppress physical stress using biodegradable establishment structures. Experiments across (sub)tropical and temperate seagrass and salt marsh systems demonstrate greatly enhanced yields when individuals are transplanted within structures mimicking emergent traits that suppress waves or sediment mobility. Specifically, belowground mimics of dense root mats most facilitate seagrasses via sediment stabilization, while mimics of aboveground plant structures most facilitate marsh grasses by reducing stem movement. Mimicking key emergent traits may allow upscaling of restoration in many ecosystems that depend on self-facilitation for persistence, by constraining biological material requirements and implementation costs. 
    more » « less