skip to main content


Title: Assessing the Contribution of Seasonality, Tides, and Microbial Processing to Dissolved Organic Matter Composition Variability in a Southeastern U.S. Estuary
Uncovering which biogeochemical processes have a critical role controlling dissolved organic matter (DOM) compositional changes in complex estuarine environments remains a challenge. In this context, the aim of this study is to characterize the dominant patterns of variability modifying the DOM composition in an estuary off the Southeastern U.S. We collected water samples during three seasons (July and October 2014 and April 2015) at both high and low tides and conducted short- (1 day) and long-term (60 days) dark incubations. Samples were analyzed for bulk DOC concentration, and optical (CDOM) and molecular (FT-ICR MS) compositions and bacterial cells were collected for metatranscriptomics. Results show that the dominant pattern of variability in DOM composition occurs at seasonal scales, likely associated with the seasonality of river discharge. After seasonal variations, long-term biodegradation was found to be comparatively more important in the fall, while tidal variability was the second most important factor correlated to DOM composition in spring, when the freshwater content in the estuary was high. Over shorter time scales, however, the influence of microbial processing was small. Microbial data revealed a similar pattern, with variability in gene expression occurring primarily at the seasonal scale and tidal influence being of secondary importance. Our analyses suggest that future changes in the seasonal delivery of freshwater to this system have the potential to significantly impact DOM composition. Changes in residence time may also be important, helping control the relative contribution of tides and long-term biodegradation to DOM compositional changes in the estuary.  more » « less
Award ID(s):
1832178 1902131 1948104
NSF-PAR ID:
10312738
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
8
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coastal drainages contain multiple sources of dissolved organic matter (DOM) that influence OM transformation and fate along inland‐to‐marine gradients. Anthropogenic activities have altered DOM composition in urban drainages, thereby influencing in‐stream breakdown rates, primary productivity, and downstream export. Yet, it is uncertain how hydrologic conditions (i.e., rainfall, tides, shallow groundwater) interact with different sources of DOM to regulate the transformation and export of DOM through urban coastal drainages. We characterized how seasonal changes in hydrologic conditions influence DOM composition and bioavailability in tidally influenced drainages in Miami, FL, USA. We estimated the quality and bioavailability of DOM using compositional proxies based on fluorescence spectroscopy, including parallel‐factor analysis, and measured dissolved organic carbon degradation during laboratory incubations containing a local bacterial community. Interactions between stormwater runoff and tidal amplitude increased the bioavailability of DOM and were positively correlated with predominantly humic‐like components in the wet season and protein‐like components in the dry season. Further, increases in tryptophan fluorescence intensity corresponded with elevated concentrations ofEscherichia coliand enterococci—likely from waste‐impacted groundwater—and contributed substantially to overall DOM bioavailability. Our results provide new evidence of an urban priming effect in which labile autochthonous DOM from anthropogenic sources facilitates microbial degradation of DOM that is driven by seasonal differences in stormwater runoff and tides. As hydrologic conditions in near‐shore aquatic ecosystems shift with urbanization and climate‐driven changes in sea‐level rise, increases in autochthonous sources of bioavailable DOM may impact ecosystem metabolism and affect the quality of DOM exported downstream.

     
    more » « less
  2. Abstract

    The interconnected estuarine complex of the Altamaha River and adjacent sounds located in Georgia (USA) functions as a hotspot for organic matter transformation as it is transported to the Atlantic Ocean. Here, we investigated how dissolved organic matter (DOM) composition changes both spatially and seasonally along the estuary and how it influences bacterial processing. Surface samples were collected during high tide at fifteen stations throughout the estuary in April, July, October 2017, and January 2018. Bulk, optical, and molecular analyses were conducted on samples before and after dark incubations to assess DOM sources and transformation patterns in the system. The dominant driver of change in DOM composition was found to be the terrigenous‐marine gradient in organic matter sources. Six distinct clusters were identified based on the terrigenous signature of the DOM pool, explaining 45% of the variance in DOM composition in the system. Bacterial consumption of dissolved organic carbon (DOC) was strongly influenced by DOM composition, with increased degradation rates for DOM with a larger terrigenous character. However, changes in optical properties suggested that less aromatic DOM that co‐varied with the terrigenous material was preferentially degraded. The passage of Hurricane Irma in September 2017 resulted in a 27% ± 7% increase in DOC content, likely due to inundation associated with storm surge and increased local precipitation, and DOC biodegradation was 17% ± 8% higher than during summer. These effects lasted for at least one month after the storm, revealing that hurricanes can have a large impact on DOM composition and cycling in coastal systems.

     
    more » « less
  3. Abstract

    Along the Gulf ofAlaska, rapid glacier retreat has driven changes in transport of freshwater, sediments, and nutrients to estuary habitats. Over the coming decades, deglaciation will lead to a temporary increase, followed by a long-term decline of glacial influence on estuaries. Therefore, quantifying the current variability in estuarine fish community structure in regions predicted to be most affected by glacier loss is necessary to anticipate future impacts. We analyzed fish community data collected monthly (April through September) over 7 years (2013–2019) from glacially influenced estuaries along the southeastern Gulf of Alaska. River delta sites within estuaries were sampled along a natural gradient of glacial to non-glacial watersheds to characterize variation in fish communities exposed to varying degrees of glacial influence. Differences in seasonal patterns of taxa richness and abundance between the most and least glacially influenced sites suggest that hydrological drivers influence the structure of delta fish communities. The most glacially influenced sites had lower richness but higher abundance overall compared to those with least glacial influence; however, differences among sites were small compared to differences across months. Two dominant species—Pacific staghorn sculpin and starry flounder—contributed most to spatial and temporal variation in community composition; however, given only small interannual differences in richness and abundance over the period of the study, we conclude that year-to-year variation at these sites is relatively low at present. Our study provides an important benchmark against which to compare shifts in fish communities as watersheds and downstream estuaries continue to transform in the coming decades.

     
    more » « less
  4. Tide and salinity data collected at minute intervals over multiple semidiurnal tides were used to investigate the source of water (e.g., seawater, river, groundwater and rain) and their relative timing in mixing at the mouth of a river, a tidal creek at mid-estuary and a tidal creek at the shoreline at the head of a tropical mangrove estuary. Our objectives were to document the temporal changes in tide induced water level changes and salinity at each location and to use the relationship between salinity and water level to elucidate the sources of water and the timing of different sources of water in the hydrologic mixing processes. The data trends in tide vs. salinity (T-S) plots for the river mouth revealed mixing with seawater during rising tides and freshwater diluted seawater (brackish) drainage from the mangrove forest during ebb tides. In the mangrove creek at mid-estuary, the data trends in the T-S plots for rising tides initially showed constant salinity, followed by sharp rises in salinity to peak tide caused by seawater intrusion. The salinity decreased precipitously at the start of tidal ebbing due to influx of freshwater (rain) diluted brackish water from the mangrove forest. The data trends in the T-S plots for the tidal creek at the shoreline located at the estuary head showed constant salinity which decreased only near peak rising tide because of river dilution. During tidal ebbing, the salinity further decreased from groundwater influx before increasing to background salinity, which stayed constant to low tide. Establishing T-S patterns for multiple locations in mangrove estuaries over sub-tidal to tidal scales define the expected salinity variations in seawater-freshwater mixing which can be used to (1) establish baseline hydrologic and salinity (hydrochemical) conditions for temporal and spatial assessments and (2) serve to guide short to long-term sampling regimes for scientific studies and estuarine ecosystem management. 
    more » « less
  5. Abstract

    Dissolved organic matter (DOM) acts as an important biogeochemical component of aquatic ecosystems that controls nutrient cycling, influences water quality, and links terrestrial and oceanic carbon pools, yet long‐term studies of how changing environmental drivers alter its abundance and composition are rare. Using a 10‐year, spatially explicit data set from Everglades National Park, a globally significant wetland, we investigated the relationships between DOM quality/quantity and hydrologic/climatic drivers along two contrasting marsh‐estuarine transects based on generalized linear modeling and a cumulative sums analysis. Analyses revealed distinct spatial, seasonal, and interannual patterns in variability of DOC and optical properties. Landscape‐scale seasonal patterns showed an enrichment in microbial‐like and protein‐like DOM during the dry season relative to the wet season. While some compositional constituents varied with the solar calendar, responsive to temperature and photoperiod, others varied with the hydrologic calendar. Independent water level and discharge effects indicated strong hydrologic control on DOM quality that differed between the two transects, evidencing differences in their connectivity to areas of high agricultural activity. Across all sites, a significant long‐term increasing trend in the fluorescence index was observed, associated with a positive correlation with precipitation and also potential changes in agricultural inputs, with other features associated with drought and hurricanes. Lastly, the cumulative sums analysis revealed differences between the two transects in the sensitivity of DOM composition to decreased water levels associated with 30‐year climate scenarios, with the less hydrologically dynamic transect exhibiting greater potential sensitivity.

     
    more » « less