Accelerated sea-level rise poses a significant threat to coastal habitats, such as salt marshes, which provide critical ecosystem services. Persistence of salt marshes with rising sea levels relies, in part, on vertical accretion. Ecogeomorphic models emphasize the role of plant production in vertical accretion via sediment trapping and belowground organic matter contribution. Thus, changes in plant production can influence saltmarsh persistence with sea-level rise. However, models of marsh accretion do not consider animal-mediated changes in plant production. We tested how 2 marsh crabs, Minuca pugnax and Sesarma reticulatum , which have contrasting effects (facilitation vs. herbivory) on Spartina alterniflora production, may indirectly influence sediment deposition and belowground production, through observational surveys and field manipulation. Minuca facilitated Spartina biomass in some marshes, but not sediment deposition, and had no effect on belowground organic matter contribution, suggesting that in isolation, Minuca has little indirect impact on saltmarsh geomorphic processes. Sesarma reduced Spartina biomass; however, sediment deposition increased, contrary to ecogeomorphic models, likely due to sediment resuspension by Minuca . When Minuca and Sesarma co-occur, the effect on Spartina production and sediment deposition depended on the amount of grazing. When Sesarma grazing is low, Minuca facilitates Spartina growth and mitigates the effect ofmore »
Mussels drive polychlorinated biphenyl (PCB) biomagnification in a coastal food web
Abstract Despite international regulation, polychlorinated biphenyls (PCBs) are routinely detected at levels threatening human and environmental health. While previous research has emphasized trophic transfer as the principle pathway for PCB accumulation, our study reveals the critical role that non-trophic interactions can play in controlling PCB bioavailability and biomagnification. In a 5-month field experiment manipulating saltmarsh macro-invertebrates, we show that suspension-feeding mussels increase concentrations of total PCBs and toxic dioxin-like coplanars by 11- and 7.5-fold in sediment and 10.5- and 9-fold in cordgrass-grazing crabs relative to no-mussel controls, but do not affect PCB bioaccumulation in algae-grazing crabs. PCB homolog composition and corroborative dietary analyses demonstrate that mussels, as ecosystem engineers, amplify sediment contamination and PCB exposure for this burrowing marsh crab through non-trophic mechanisms. We conclude that these ecosystem engineering activities and other non-trophic interactions may have cascading effects on trophic biomagnification pathways, and therefore exert strong bottom-up control on PCB biomagnification up this coastal food web.
- Award ID(s):
- 1832178
- Publication Date:
- NSF-PAR ID:
- 10312741
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigated the response of an open-ocean plankton food web to a major ecosystem perturbation event, the Hawaiian lee cyclonic eddy Opal, using compound-specific isotopic analyses of amino acids (CSIA-AA) of individual zooplankton taxa. We hypothesized that the massive diatom bloom that characterized Opal would lead to a shorter food chain. Using CSIA-AA, we differentiated trophic position (TP) changes that arose from altered transfers through protistan microzooplankton, versus metazoan carnivory, and assessed the variability at the base of the food web. Contrary to expectation, zooplankton TPs were higher in the eddy than in ambient control waters (up to 0.8 trophic level), particularly for suspension feeders close to the food-web base. Most of the effect was due to increased trophic transfers through protistan consumers, indicating a general shift up, not down, of grazing and remineralization in the microbial food web. Eucalanus sp., which was 15-fold more abundant inside compared to outside of the eddy, was the only taxon observed to be a true herbivore (TP = 2.0), consistent with a high phenylalanine (Phe) δ 15 N value indicating feeding on nitrate-fueled diatoms in the lower euphotic zone. Oncaea sp., an aggregate-associated copepod, had the largest (1.5) TP difference, and lowest Phemore »
-
Aggregations of freshwater mussels create patches that can benefit other organisms through direct habitat alterations or indirect stimulation of trophic resources via nutrient excretion and biodeposition. Spent shells and the shells of living mussels add complexity to benthic environments by providing shelter from predators and increasing habitat heterogeneity. Combined, these factors can increase primary productivity and macroinvertebrate abundance in patches where mussel biomass is high, providing valuable subsidies for some fishes and influencing their distributions. We performed a 12-wk field experiment to test whether fish distributions within mussel beds were most influenced by the presence of subsidies associated with live mussels or the biogenic habitat of shells. We used remote underwater video recordings to quantify fish occurrences at fifty 0.25-m2 experimental enclosures stocked with either live mussels (2-species assemblages), sham mussels (shells filled with sand), or sediment only. The biomass of algae and benthic macroinvertebrates increased over time but were uninfluenced by treatment. We detected more fish in live mussel and sham treatments than in the sediment-only treatment but found no difference between live mussel and sham treatments. Thus, habitat provided by mussel shells may be the primary benefit to fishes that co-occur with mussels. Increased spatiotemporal overlap between fishmore »
-
Oysters are described as estuarine ecosystem engineers because their reef structures provide habitat for a variety of flora and fauna, alter hydrodynamics, and affect sediment composition. To what spatial extent oyster reefs influence surrounding infauna and sediment composition remains uncertain. We sampled sediment and infauna across 8 intertidal mudflats at distances up to 100 m from oyster reefs within coastal bays of Virginia, USA, to determine if distance from reefs and physical site characteristics (reef elevation, local hydrodynamics, and oyster cover) explain the spatial distributions of infauna and sediment. Total infauna density increased with distance away from reefs; however, the opposite was observed for predatory crustaceans (primarily crabs). Our results indicate a halo surrounding the reefs of approximately 40 m (using an increase in ~25% of observance as the halo criterion). At 90 m from reefs, bivalves and gastropods were 70% more likely to be found (probability of observance), while there was an approximate 4-fold decrease for large crustaceans compared to locations adjacent to reefs. Increases in percent oyster reef cover and/or mean reef area did not statistically alter infauna densities but showed a statistical correlation with smaller sediment grain size, increased organic matter, and reduced flow rates. Weaker flowmore »
-
Facilitation cascades are chains of positive interactions that occur as frequently as trophic cascades, and are equally important drivers of ecosystem function where they involve the overlap of primary and secondary, or dependent, habitat-forming foundation species [cite]. Although it is well-recognized that the size and configuration of secondary foundation species’ patches are critical features modulating the ecological effects of facilitation cascades, the mechanisms governing their spatial distribution are often challenging to discern given that they operate across multiple spatial and temporal scales [cite]. We therefore combined regional surveys of southeastern US salt marsh geomorphology and invertebrate communities with a predator exclusion experiment to elucidate the drivers, both geomorphic and biotic, controlling the establishment, persistence, and ecosystem functioning impacts of a regionally-abundant facilitation cascade involving habitat-forming marsh cordgrass and aggregations of ribbed mussels. We discovered a hierarchy of physical and biological factors predictably controlling the strength and self-organization of this facilitation cascade across creekshed, landscape, and patch scales. These results significantly enhance our capacity to spatially predict coastal ecosystem function across scales based on easily identifiable metrics of geomorphology that are mechanistically linked to ecological processes [cite]. Replication of this approach across vegetated coastal ecosystems has the potential to support managementmore »