skip to main content

This content will become publicly available on October 1, 2022

Title: Neurotransmission and neuromodulation systems in the learning and memory network of Octopus vulgaris
The vertical lobe (VL) in the octopus brain plays an essential role in its sophisticated learning and memory. Early anatomical studies suggested that the VL is organized in a “fan-out fan-in” connectivity matrix comprising only three morphologically identified neuron types; input axons from the superior frontal lobe (SFL) innervating en passant millions of small amacrine interneurons (AMs) which converge sharply onto large VL output neurons (LNs). Recent physiological studies confirmed the feedforward excitatory connectivity: a glutamatergic synapse at the first SFL-to-AM synaptic layer and a cholinergic AM-to-LNs synapse. SFL-to-AMs synapses show a robust hippocampal-like activity-dependent long-term potentiation (LTP) of transmitter release. 5-HT, octopamine, dopamine, and nitric oxide modulate short- and long-term VL synaptic plasticity. Here we present a comprehensive histolabeling study to better characterize the neural elements in the VL. We generally confirmed glutamatergic SFLs and cholinergic AMs. Intense labeling for NOS activity in the AMs neurites fitted with the NO-dependent presynaptic LTP mechanism at the SFL-to-AM synapse. New discoveries here reveal more heterogeneity of the VL neurons than previously thought. GABAergic AMs suggest a subpopulation of inhibitory interneurons in the first input layer. Clear GABA labeling in the cell bodies of LNs supported an inhibitory VL output yet the more » LNs co-expressed FMRFamide-like neuropeptides suggesting an additional neuromodulatory role of the VL output. Furthermore, a group of LNs was glutamatergic. A new cluster of cells organized in a “deep nucleus” showed rich catecholaminergic labeling and may play a role in intrinsic neuromodulation. In situ hybridization and immunolabeling allowed characterization and localization of a rich array of neuropeptides and neuromodulators, likely involved in reward/punishment signals. This analysis of the fast transmission system, together with the newly found cellular elements helps integrate behavioral, physiological, pharmacological, and connectome findings into a more comprehensive understanding of an efficient learning and memory network. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION Balance between excitatory and inhibitory neuron (interneuron) populations in the cortex promotes normal brain function. Interneurons are primarily generated in the medial, caudal, and lateral ganglionic eminences (MGE, CGE, and LGE) of the ventral embryonic forebrain; these subregions give rise to distinct interneuron subpopulations. In rodents, the MGE generates cortical interneurons, the parvalbumin + (PV + ) and somatostatin + (SST + ) subtypes that connect with excitatory neurons to regulate their activity. Defects in interneuron production have been implicated in neurodevelopmental and psychiatric disorders including autism, epilepsy, and schizophrenia. RATIONALE How does the human MGE (hMGE) produce themore »number of interneurons required to populate the forebrain? The hMGE contains progenitor clusters distinct from what has been observed in the rodent MGE and other germinal zones of the human brain. This cytoarchitecture could be the key to understanding interneuron neurogenesis. We investigated the cellular and molecular properties of different compartments within the developing hMGE, from 14 gestational weeks (GW) to 39 GW (term), to study their contribution to the production of inhibitory interneurons. We developed a xenotransplantation assay to follow the migration and maturation of the human interneurons derived from this germinal region. RESULTS Within the hMGE, densely packed aggregates (nests) of doublecortin + (DCX + ) and LHX6 + cells were surrounded by nestin + progenitor cells and their processes. These DCX + cell–enriched nests (DENs) were observed in the hMGE but not in the adjacent LGE. We found that cells within DENs expressed molecular markers associated with young neurons, such as DCX, and polysialylated neural cell adhesion molecule (PSA-NCAM). A subpopulation also expressed Ki-67, a marker of proliferation; therefore, we refer to these cells as neuroblasts. A fraction of DCX + cells inside DENs expressed SOX2 and E2F1, transcription factors associated with progenitor and proliferative properties. More than 20% of DCX + cells in the hMGE were dividing, specifically within DENs. Proliferating neuroblasts in DENs persisted in the hMGE throughout prenatal human brain development. The division of DCX + cells was confirmed by transmission electron microscopy and time-lapse microscopy. Electron microscopy revealed adhesion contacts between cells within DENs, providing multiple sites to anchor DEN cells together. Neuroblasts within DENs express PCDH19, and nestin + progenitors surrounding DENs express PCDH10; these findings suggest a role for differential cell adhesion in DEN formation and maintenance. When transplanted into the neonatal mouse brain, dissociated hMGE cells reformed DENs containing proliferative DCX + cells, similar to DENs observed in the prenatal human brain. This suggests that DENs are generated by cell-autonomous mechanisms. In addition to forming DENs, transplanted hMGE-derived neuroblasts generated young neurons that migrated extensively into cortical and subcortical regions in the host mouse brain. One year after transplantation, these neuroblasts had differentiated into distinct γ-aminobutyric acid–expressing (GABAergic) interneuron subtypes, including SST + and PV + cells, that showed morphological and functional maturation. CONCLUSION The hMGE harbors DENs, where cells expressing early neuronal markers continue to divide and produce GABAergic interneurons. This MGE-specific arrangement of neuroblasts in the human brain is present until birth, supporting expanded neurogenesis for inhibitory neurons. Given the robust neurogenic output from this region, knowledge of the mechanisms underlying cortical interneuron production in the hMGE will provide insights into the cell types and developmental periods that are most vulnerable to genetic or environmental insults. Nests of DCX + cells in the ventral prenatal brain. Schematic of a coronal view of the embryonic human forebrain showing the medial ganglionic eminence (MGE, green), with nests of DCX + cells (DENs, green). Nestin + progenitor cells (blue) are present within the VZ and iSVZ and are intercalated in the oSVZ (where DENs reside). The initial segment of the oSVZ contains palisades of nestin + progenitors referred to as type I clusters (light blue cells) around DENs. In the outer part of the oSVZ, DENs transition to chains of migrating DCX + cells; surrounding nestin + progenitors are arranged into groups of cells referred to as type II clusters (white cells). In addition to proliferation of nestin + progenitors, cell division is present among DCX + cells within DENs, suggesting multiple progenitor states for the generation of MGE-derived interneurons in the human forebrain. ILLUSTRATION: NOEL SIRIVANSANTI« less
  2. The dentate gyrus (DG) is a region of the adult rodent brain that undergoes continuous neurogenesis. Seizures and loss or dysfunction of GABAergic synapses onto adult-born dentate granule cells (GCs) alter their dendritic growth and migration, resulting in dysmorphic and hyperexcitable GCs. Additionally, transplants of fetal GABAergic interneurons in the DG of mice with temporal lobe epilepsy (TLE) result in seizure suppression, but it is unknown whether increasing interneurons with these transplants restores GABAergic innervation to adult-born GCs. Here we address this question by retroviral birth-dating GCs at different times up to 12 weeks after pilocarpine-induced TLE in adult mice.more »ChR2-EYFP-expressing MGE-derived GABAergic interneurons from E13.5 mouse embryos were transplanted into the DG of the TLE mice and GCs with transplant-derived inhibitory post-synaptic currents were identified by patch-clamp electrophysiology and optogenetic interrogation. Putative synaptic sites between GCs and GABAergic transplants were also confirmed by intracellular biocytin staining, immunohistochemistry, and confocal imaging. 3D reconstructions of dendritic arbors and quantitative morphometric analyses were carried out in >150 adult-born GCs. GABAergic inputs from transplanted interneurons correlated with markedly shorter GC dendrites, compared to GCs that were not innervated by the transplants. Moreover, these effects were confined to distal dendritic branches and a short time window of 6-8 weeks. The effects were independent of seizures as they were also observed in naïve mice with MGE transplants. These findings are consistent with the hypothesis that increased inhibitory currents over a smaller dendritic arbor in adult-born GCs may reduce their excitability and lead to seizure suppression.« less
  3. Dempski, Robert (Ed.)
    This paper describes research methods to investigate the development of synaptic connections between transplanted GABAergic interneurons and endogenous neurons in the adult mouse hippocampus. Our protocol highlights methods for retroviral labeling adult-born GCs, one of the few cell types in the adult brain to be continuously renewed throughout life. By precise targeting of the retrovirus, labeling of adult-born GCs can be combined with optogenetic stimulation of the transplanted cells and electrophysiology in brain slices, to test whether the GABAergic interneurons integrate and establish inhibitory synaptic connections with host brain neurons. Modifications to adult neurogenesis are an important contributing factor inmore »the development and severity of TLE and seizures. When combined with retroviral labeling, the approaches we describe in this chapter can be used to determine whether transplantation modifies the process of adult neurogenesis or other properties of the hippocampus. These approaches are helping to define parameters for potential cell replacement therapies to be used in patients with intractable seizure disorders.« less
  4. The activity of motor cortex is necessary for accurate stepping on a complex terrain. How this activity is generated remains unclear. The goal of this study was to clarify the contribution of signals from the ventrolateral thalamus (VL) to formation of locomotion-related activity of motor cortex during vision-independent and vision-dependent locomotion. In two cats, we recorded the activity of neurons in layer V of motor cortex as cats walked on a flat surface and a horizontal ladder. We reversibly inactivated ~10% of the VL unilaterally with the glutamatergic transmission antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and analyzed how this affected the activity ofmore »motor cortex neurons. We examined neuronal subpopulations with somatosensory receptive fields on different segments of the forelimb and pyramidal tract projecting neurons (PTNs). We found that the VL contribution to the locomotion-related activity of motor cortex is very powerful and has both excitatory and inhibitory components. The magnitudes of both the excitatory and inhibitory contributions fluctuate over the step cycle and depend on locomotion task. On a flat surface, the VL contributes more excitation to the shoulder- and elbow-related neurons than the wrist/paw-related cells. The VL excites the shoulder-related group the most during the transition from stance to swing phase, while most intensively exciting the elbow-related group during the transition from swing to stance. The VL contributes more excitation for the fast- than slow-conducting PTNs. Upon transition to vision-dependent locomotion on the ladder, the VL contribution increases more for the wrist/paw-related neurons and slow-conducting PTNs. NEW & NOTEWORTHY How the activity of motor cortex is generated and the roles that different inputs to motor cortex play in formation of response properties of motor cortex neurons during movements remain unclear. This is the first study to characterize the contribution of the input from the ventrolateral thalamus (VL), the main subcortical input to motor cortex, to the activity of motor cortex neurons during vision-independent and vision-dependent locomotion.« less
  5. The mechanisms specifying neuronal diversity are well characterized, yet it remains unclear how or if these mechanisms regulate neural circuit assembly. To address this, we mapped the developmental origin of 160 interneurons from seven bilateral neural progenitors (neuroblasts) and identify them in a synapse-scale TEM reconstruction of the Drosophila larval central nervous system. We find that lineages concurrently build the sensory and motor neuropils by generating sensory and motor hemilineages in a Notch-dependent manner. Neurons in a hemilineage share common synaptic targeting within the neuropil, which is further refined based on neuronal temporal identity. Connectome analysis shows that hemilineage-temporal cohortsmore »share common connectivity. Finally, we show that proximity alone cannot explain the observed connectivity structure, suggesting hemilineage/temporal identity confers an added layer of specificity. Thus, we demonstrate that the mechanisms specifying neuronal diversity also govern circuit formation and function, and that these principles are broadly applicable throughout the nervous system.« less