skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: A Framework for Private Matrix Analysis in Sliding Window Model
We perform a rigorous study of private matrix analysis when only the last 𝑊 updates to matrices are considered useful for analysis. We show the existing framework in the non-private setting is not robust to noise required for privacy. We then propose a framework robust to noise and use it to give first efficient 𝑜(𝑊) space differentially private algorithms for spectral approximation, principal component analysis (PCA), multi-response linear regression, sparse PCA, and non-negative PCA. Prior to our work, no such result was known for sparse and non-negative differentially private PCA even in the static data setting. We also give a lower bound to demonstrate the cost of privacy in the sliding window model.  more » « less
Award ID(s):
1838139
PAR ID:
10312886
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
139
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Banerjee, Arindam; Fukumizu, Kenji (Ed.)
    Numerous tasks in machine learning and artificial intelligence have been modeled as submodular maximization problems. These problems usually involve sensitive data about individuals, and in addition to maximizing the utility, privacy concerns should be considered. In this paper, we study the general framework of non-negative monotone submodular maximization subject to matroid or knapsack constraints in both offline and online settings. For the offline setting, we propose a differentially private $$(1-\frac{\kappa}{e})$$-approximation algorithm, where $$\kappa\in[0,1]$$ is the total curvature of the submodular set function, which improves upon prior works in terms of approximation guarantee and query complexity under the same privacy budget. In the online setting, we propose the first differentially private algorithm, and we specify the conditions under which the regret bound scales as $$Ø(\sqrt{T})$$, i.e., privacy could be ensured while maintaining the same regret bound as the optimal regret guarantee in the non-private setting. 
    more » « less
  2. null (Ed.)
    We introduce a simple framework for designing private boosting algorithms. We give natural conditions under which these algorithms are differentially private, efficient, and noise-tolerant PAC learners. To demonstrate our framework, we use it to construct noise-tolerant and private PAC learners for large-margin halfspaces whose sample complexity does not depend on the dimension. We give two sample complexity bounds for our large-margin halfspace learner. One bound is based only on differential privacy, and uses this guarantee as an asset for ensuring generalization. This first bound illustrates a general methodology for obtaining PAC learners from privacy, which may be of independent interest. The second bound uses standard techniques from the theory of large-margin classification (the fat-shattering dimension) to match the best known sample complexity for differentially private learning of large-margin halfspaces, while additionally tolerating random label noise. 
    more » « less
  3. null (Ed.)
    Differential privacy has become a de facto standard for releasing data in a privacy-preserving way. Creating a differentially private algorithm is a process that often starts with a noise-free (nonprivate) algorithm. The designer then decides where to add noise, and how much of it to add. This can be a non-trivial process – if not done carefully, the algorithm might either violate differential privacy or have low utility. In this paper, we present DPGen, a program synthesizer that takes in non-private code (without any noise) and automatically synthesizes its differentially private version (with carefully calibrated noise). Under the hood, DPGen uses novel algorithms to automatically generate a sketch program with candidate locations for noise, and then optimize privacy proof and noise scales simultaneously on the sketch program. Moreover, DPGen can synthesize sophisticated mechanisms that adaptively process queries until a specified privacy budget is exhausted. When evaluated on standard benchmarks, DPGen is able to generate differentially private mechanisms that optimize simple utility functions within 120 seconds. It is also powerful enough to synthesize adaptive privacy mechanisms. 
    more » « less
  4. The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis. 
    more » « less
  5. null (Ed.)
    Driven by a wide range of applications, several principal subspace estimation problems have been studied individually under different structural constraints. This paper presents a uni- fied framework for the statistical analysis of a general structured principal subspace estima- tion problem which includes as special cases sparse PCA/SVD, non-negative PCA/SVD, subspace constrained PCA/SVD, and spectral clustering. General minimax lower and up- per bounds are established to characterize the interplay between the information-geometric complexity of the constraint set for the principal subspaces, the signal-to-noise ratio (SNR), and the dimensionality. The results yield interesting phase transition phenomena concern- ing the rates of convergence as a function of the SNRs and the fundamental limit for consistent estimation. Applying the general results to the specific settings yields the mini- max rates of convergence for those problems, including the previous unknown optimal rates for sparse SVD, non-negative PCA/SVD and subspace constrained PCA/SVD. 
    more » « less