skip to main content


Title: A Framework for Private Matrix Analysis in Sliding Window Model
We perform a rigorous study of private matrix analysis when only the last 𝑊 updates to matrices are considered useful for analysis. We show the existing framework in the non-private setting is not robust to noise required for privacy. We then propose a framework robust to noise and use it to give first efficient 𝑜(𝑊) space differentially private algorithms for spectral approximation, principal component analysis (PCA), multi-response linear regression, sparse PCA, and non-negative PCA. Prior to our work, no such result was known for sparse and non-negative differentially private PCA even in the static data setting. We also give a lower bound to demonstrate the cost of privacy in the sliding window model.  more » « less
Award ID(s):
1838139
NSF-PAR ID:
10312886
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
139
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Banerjee, Arindam ; Fukumizu, Kenji (Ed.)
    Numerous tasks in machine learning and artificial intelligence have been modeled as submodular maximization problems. These problems usually involve sensitive data about individuals, and in addition to maximizing the utility, privacy concerns should be considered. In this paper, we study the general framework of non-negative monotone submodular maximization subject to matroid or knapsack constraints in both offline and online settings. For the offline setting, we propose a differentially private $(1-\frac{\kappa}{e})$-approximation algorithm, where $\kappa\in[0,1]$ is the total curvature of the submodular set function, which improves upon prior works in terms of approximation guarantee and query complexity under the same privacy budget. In the online setting, we propose the first differentially private algorithm, and we specify the conditions under which the regret bound scales as $Ø(\sqrt{T})$, i.e., privacy could be ensured while maintaining the same regret bound as the optimal regret guarantee in the non-private setting. 
    more » « less
  2. null (Ed.)
    We introduce a simple framework for designing private boosting algorithms. We give natural conditions under which these algorithms are differentially private, efficient, and noise-tolerant PAC learners. To demonstrate our framework, we use it to construct noise-tolerant and private PAC learners for large-margin halfspaces whose sample complexity does not depend on the dimension. We give two sample complexity bounds for our large-margin halfspace learner. One bound is based only on differential privacy, and uses this guarantee as an asset for ensuring generalization. This first bound illustrates a general methodology for obtaining PAC learners from privacy, which may be of independent interest. The second bound uses standard techniques from the theory of large-margin classification (the fat-shattering dimension) to match the best known sample complexity for differentially private learning of large-margin halfspaces, while additionally tolerating random label noise. 
    more » « less
  3. Krause, Andreas (Ed.)
    The Private Aggregation of Teacher Ensembles (PATE) framework is one of the most promising recent approaches in differentially private learning. Existing theoretical analysis shows that PATE consistently learns any VC-classes in the realizable setting, but falls short in explaining its success in more general cases where the error rate of the optimal classifier is bounded away from zero. We fill in this gap by introducing the Tsybakov Noise Condition (TNC) and establish stronger and more interpretable learning bounds. These bounds provide new insights into when PATE works and improve over existing results even in the narrower realizable setting. We also investigate the compelling idea of using active learning for saving privacy budget, and empirical studies show the effectiveness of this new idea. The novel components in the proofs include a more refined analysis of the majority voting classifier — which could be of independent interest — and an observation that the synthetic “student” learning problem is nearly realizable by construction under the Tsybakov noise condition. 
    more » « less
  4. The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis. 
    more » « less
  5. Abstract Organizations often collect private data and release aggregate statistics for the public’s benefit. If no steps toward preserving privacy are taken, adversaries may use released statistics to deduce unauthorized information about the individuals described in the private dataset. Differentially private algorithms address this challenge by slightly perturbing underlying statistics with noise, thereby mathematically limiting the amount of information that may be deduced from each data release. Properly calibrating these algorithms—and in turn the disclosure risk for people described in the dataset—requires a data curator to choose a value for a privacy budget parameter, ɛ . However, there is little formal guidance for choosing ɛ , a task that requires reasoning about the probabilistic privacy–utility tradeoff. Furthermore, choosing ɛ in the context of statistical inference requires reasoning about accuracy trade-offs in the presence of both measurement error and differential privacy (DP) noise. We present Vi sualizing P rivacy (ViP), an interactive interface that visualizes relationships between ɛ , accuracy, and disclosure risk to support setting and splitting ɛ among queries. As a user adjusts ɛ , ViP dynamically updates visualizations depicting expected accuracy and risk. ViP also has an inference setting, allowing a user to reason about the impact of DP noise on statistical inferences. Finally, we present results of a study where 16 research practitioners with little to no DP background completed a set of tasks related to setting ɛ using both ViP and a control. We find that ViP helps participants more correctly answer questions related to judging the probability of where a DP-noised release is likely to fall and comparing between DP-noised and non-private confidence intervals. 
    more » « less