skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: H  i -MaNGA: tracing the physics of the neutral and ionized ISM with the second data release
ABSTRACT We present the second data release for the H i-MaNGA programme of H i follow-up observations for the SDSS-IV MaNGA survey. This release contains measurements for 3669 unique galaxies, combining 2108 Green Bank Telescope observations with an updated crossmatch of the MaNGA sample with the ALFALFA survey. We combine these data with MaNGA spectroscopic measurements to examine relationships between H i-to-stellar mass ratio ($${\rm M_{H\, {\small I}}/{M_*}}$$) and average ISM/star formation properties probed by optical emission lines. $${\rm M_{H\, {\small I}}/{M_*}}$$ is very weakly correlated with the equivalent width of H α, implying a loose connection between the instantaneous star formation rate and the H i reservoir, although the link between $${\rm M_{H\, {\small I}}/{M_*}}$$ and star formation strengthens when averaged even over only moderate time-scales (∼30 Myr). Galaxies with elevated H i depletion times have enhanced [O i]/H α and depressed H α surface brightness, consistent with more H i residing in a diffuse and/or shock-heated phase that is less capable of condensing into molecular clouds. Of all optical lines, $${\rm M_{H\, {\small I}}/{M_*}}$$ correlates most strongly with oxygen equivalent width, EW(O), which is likely a result of the existing correlation between $${\rm M_{H\, {\small I}}/{M_*}}$$ and gas-phase metallicity. Residuals in the $${\rm M_{H\, {\small I}}/{M_*}}$$−EW(O) relation are again correlated with [O i]/H α and H α surface brightness, suggesting they are also driven by variations in the fraction of diffuse and/or shock-heated gas. We recover the strong anticorrelation between $${\rm M_{H\, {\small I}}/{M_*}}$$ and gas-phase metallicity seen in previous studies. We also find a relationship between $${\rm M_{H\, {\small I}}/{M_*}}$$ and [O i]6302/H α, suggesting that higher fractions of diffuse and/or shock-heated gas are more prevalent in gas-rich galaxies.  more » « less
Award ID(s):
1950797
PAR ID:
10312905
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT This paper presents a survey of Mg ii absorbing gas in the vicinity of 380 random galaxies, using 156 background quasi-stellar objects (QSOs) as absorption-line probes. The sample comprises 211 isolated (73 quiescent and 138 star-forming galaxies) and 43 non-isolated galaxies with sensitive constraints for both Mg ii absorption and H α emission. The projected distances span a range from d = 9 to 497 kpc, redshifts of the galaxies range from z = 0.10 to 0.48, and rest-frame absolute B-band magnitudes range from MB = −16.7 to −22.8. Our analysis shows that the rest-frame equivalent width of Mg ii, Wr(2796), depends on halo radius (Rh), B-band luminosity(LB), and stellar mass (Mstar) of the host galaxies, and declines steeply with increasing d for isolated, star-forming galaxies. At the same time, Wr(2796) exhibits no clear trend for either isolated, quiescent galaxies or non-isolated galaxies. In addition, the covering fraction of Mg ii absorbing gas 〈κ〉 is high with 〈κ〉 ≳ 60 per cent at <40 kpc for isolated galaxies and declines rapidly to 〈κ〉 ≈ 0 at d ≳ 100 kpc. Within the gaseous radius, the incidence of Mg ii gas depends sensitively on both Mstar and the specific star formation rate inferred from H α. Different from what is known for massive quiescent haloes, the observed velocity dispersion of Mg ii absorbing gas around star-forming galaxies is consistent with expectations from virial motion, which constrains individual clump mass to $$m_{\rm cl} \gtrsim 10^5 \, \rm M_\odot$$ and cool gas accretion rate of $$\sim 0.7\!-\!2 \, \mathrm{ M}_\odot \, \rm yr^{-1}$$. Finally, we find no strong azimuthal dependence of Mg ii absorption for either star-forming or quiescent galaxies. Our results demonstrate that multiple parameters affect the properties of gaseous haloes around galaxies and highlight the need of a homogeneous, absorption-blind sample for establishing a holistic description of chemically enriched gas in the circumgalactic space. 
    more » « less
  2. ABSTRACT We analyse the rest-optical emission-line ratios of z ∼ 1.5 galaxies drawn from the Multi-Object Spectrometer for Infra-Red Exploration Deep Evolution Field (MOSDEF) survey. Using composite spectra, we investigate the mass–metallicity relation (MZR) at z ∼ 1.5 and measure its evolution to z = 0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z ∼ 1.5 to z = 0 depends on stellar mass, evolving by $$\Delta \rm log(\rm O/H) \sim 0.25$$ dex at M*< $$10^{9.75}\, \mathrm{M}_{\odot }$$ down to $$\Delta \rm log(\rm O/H) \sim 0.05$$ at M* ≳ $$10^{10.5}\, \mathrm{M}_{\odot }$$. In contrast, the O3N2-based MZR shows a constant offset of $$\Delta \rm log(\rm O/H) \sim 0.30$$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z ∼ 1.5 sample. We investigated the secondary dependence of the MZR on star formation rate (SFR) by measuring correlated scatter about the mean M*-specific SFR and M*−$$\log (\rm O3N2)$$ relations. We find an anticorrelation between $$\log (\rm O/H)$$ and sSFR offsets, indicating the presence of a M*−SFR−Z relation, though with limited significance. Additionally, we find that our z ∼ 1.5 stacks lie along the z = 0 metallicity sequence at fixed μ = log (M*/M⊙) − 0.6 × $$\log (\rm SFR / M_{\odot } \, yr^{-1})$$ suggesting that the z ∼ 1.5 stacks can be described by the z = 0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [N ii]/H α scales with galaxy properties is crucial to accurately describe the effects of blended [N ii] and H α on redshift and H α fiux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope. 
    more » « less
  3. ABSTRACT We present determinations of the gas-phase and stellar metallicities of a sample of 65 star-forming galaxies at $$z \simeq 3.5$$ using rest-frame far-ultraviolet (FUV) spectroscopy from the VANDELS survey in combination with follow-up rest-frame optical spectroscopy from VLT/KMOS and Keck/MOSFIRE. We infer gas-phase oxygen abundances ($$Z_{\mathrm{g}}$$; tracing O/H) via strong optical nebular lines and stellar iron abundances ($$Z_{\star }$$; tracing Fe/H) from full spectral fitting to the FUV continuum. Our sample spans the stellar mass range $$8.5 \lt \mathrm{log}(M_{\star }/\mathrm{M}_{\odot }) \lt 10.5$$ and shows clear evidence for both a stellar and gas-phase mass-metallicity relation (MZR). We find that our O and Fe abundance estimates both exhibit a similar mass-dependence, such that $$\mathrm{Fe/H}\propto M_{\star }^{0.30\pm 0.11}$$ and $$\mathrm{O/H}\propto M_{\star }^{0.32\pm 0.09}$$. At fixed $$M_{\star }$$ we find that, relative to their solar values, O abundances are systematically larger than Fe abundances (i.e. α-enhancement). We estimate an average enhancement of $$\mathrm{(O/Fe)} = 2.65 \pm 0.16 \times \mathrm{(O/Fe)_\odot }$$ which appears to be independent of $$M_{\star }$$. We employ analytic chemical evolution models to place a constraint on the strength of galactic-level outflows via the mass-outflow factor ($$\eta$$). We show that outflow efficiencies that scale as $$\eta \propto M_{\star }^{-0.32}$$ can simultaneously explain the functional form of of the stellar and gas-phase MZR, as well as the degree of α-enhancement at fixed Fe/H. Our results add further evidence to support a picture in which α-enhanced abundance ratios are ubiquitous in high-redshift star-forming galaxies, as expected for young systems whose interstellar medium is primarily enriched by core-collapse supernovae. 
    more » « less
  4. ABSTRACT We present a detailed study of two partial Lyman limit systems (pLLSs) of neutral hydrogen column density $$N_\mathrm{H\, I}\approx (1-3)\times 10^{16}\, \mathrm{cm}^{-2}$$ discovered at $$z$$ = 0.5 in the Cosmic Ultraviolet Baryon Survey (CUBS). Available far-ultraviolet spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and optical echelle spectra from MIKE on the Magellan Telescopes enable a comprehensive ionization analysis of diffuse circumgalactic gas based on resolved kinematics and abundance ratios of atomic species spanning five different ionization stages. These data provide unambiguous evidence of kinematically aligned multiphase gas that masquerades as a single-phase structure and can only be resolved by simultaneous accounting of the full range of observed ionic species. Both systems are resolved into multiple components with inferred α-element abundance varying from [α/H] ≈−0.8 to near solar and densities spanning over two decades from log nH/cm−3 ≈ −2.2 to <−4.3. Available deep galaxy survey data from the CUBS program taken with VLT/MUSE, Magellan/LDSS3-C and Magellan/IMACS reveal that the $$z$$ = 0.47 system is located 55 kpc from a star-forming galaxy with prominent Balmer absorption of stellar mass $${{M_{\rm star}}}\approx 2\times 10^{10}\, {{M_{\odot}}}$$, while the $$z$$ = 0.54 system resides in an overdense environment of 11 galaxies within 750 kpc in projected distance, with the most massive being a luminous red galaxy of $${{M_{\rm star}}}\approx 2\times 10^{11}\, {{M_{\odot}}}$$ at 375 kpc. The study of these two pLLSs adds to an emerging picture of the complex, multiphase circumgalactic gas that varies in chemical abundances and density on small spatial scales in diverse galaxy environments. The inhomogeneous nature of metal enrichment and density revealed in observations must be taken into account in theoretical models of diffuse halo gas. 
    more » « less
  5. ABSTRACT We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and $${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $$\mu$$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $$50{{\ \rm per\ cent}}$$ solar. To explain the measured dust-corrected luminosity ratios of $$\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$$ and $$\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$$ for our sample, ionization parameters log (U) < −2 and electron densities $$\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. The analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6. 
    more » « less