skip to main content


Title: Radiation-resistant binary solid solutions via vacancy trapping on solute clusters
Additions of solute that trap vacancies slow down vacancy diffusion and promote point-defect recombination in alloys subjected to irradiation. Such selective alloying can thus help to minimize the detrimental consequences resulting from point defect fluxes. The current work investigates the effect of solute additions on the recombi- nation rate using kinetic Monte Carlo simulations for a model alloy system, which was parametrized to Cu-Ag in the dilute limit, but with an increased solubility limit, ≈0.86 at.% at 300 K. As the solute concentration was increased above 0.1 at.%, solute clustering was observed and led to a strong increase in recombination rate. The beneficial effects of solute clustering on reducing vacancy mobility, and reducing solute drag, were analyzed by calculating relevant transport coefficients using the KineCluE code (Schuler et al., Computational Materials Science (2020) 172,109,191). Moreover, it was observed in the KMC simulations that large recombination rates resulted in a shift of steady-state distributions of solute cluster sizes to smaller clusters compared to equilibrium distributions in the solid solution. This shift is rationalized as resulting from the irreversible character of the interstitial-vacancy recombination reaction. These results suggest a novel irradiation effect on phase stability where a high recombination rate increases the solubility limit of a solute at steady state over its equilibrium value.  more » « less
Award ID(s):
1709857
NSF-PAR ID:
10312915
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Materialia
Volume:
20
ISSN:
2589-1529
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Monolayer molybdenum disulfide has been previously discovered to exhibit non-volatile resistive switching behavior in a vertical metal-insulator-metal structure, featuring ultra-thin sub-nanometer active layer thickness. However, the reliability of these nascent 2D-based memory devices was not previously investigated for practical applications. Here, we employ an electron irradiation treatment on monolayer MoS2film to modify the defect properties. Raman, photoluminescence, and X-ray photoelectron spectroscopy measurements have been performed to confirm the increasing amount of sulfur vacancies introduced by the e-beam irradiation process. The statistical electrical studies reveal the reliability can be improved by up to 1.5× for yield and 11× for average DC cycling endurance in the devices with a moderate radiation dose compared to unirradiated devices. Based on our previously proposed virtual conductive-point model with the metal ion substitution into sulfur vacancy, Monte Carlo simulations have been performed to illustrate the irradiation effect on device reliability, elucidating a clustering failure mechanism. This work provides an approach by electron irradiation to enhance the reliability of 2D memory devices and inspires further research in defect engineering to precisely control the switching properties for a wide range of applications from memory computing to radio-frequency switches.

     
    more » « less
  2. The impact of 1.8 MeV proton irradiation on metalorganic chemical vapor deposition grown (010) β-Ga2O3 Schottky diodes is presented. It is found that after a 10.8×1013cm−2 proton fluence the Schottky barrier height of (1.40±0.05 eV) and the ideality factor of (1.05±0.05) are unaffected. Capacitance–voltage extracted net ionized doping curves indicate a carrier removal rate of 268±10cm−1. The defect states responsible for the observed carrier removal are studied through a combination of deep level transient and optical spectroscopies (DLTS/DLOS) as well as lighted capacitance–voltage (LCV) measurements. The dominating effect on the defect spectrum is due to the EC-2.0 eV defect state observed in DLOS and LCV. This state accounts for ∼75% of the total trap introduction rate and is the primary source of carrier removal from proton irradiation. Of the DLTS detected states, the EC-0.72 eV state dominated but had a comparably smaller contribution to the trap introduction. These two traps have previously been correlated with acceptor-like gallium vacancy-related defects. Several other trap states at EC-0.36, EC-0.63, and EC-1.09 eV were newly detected after proton irradiation, and two pre-existing states at EC-1.2 and EC-4.4 eV showed a slight increase in concentration after irradiation, together accounting for the remainder of trap introduction. However, a pre-existing trap at EC-0.40 eV was found to be insensitive to proton irradiation and, therefore, is likely of extrinsic origin. The comprehensive defect characterization of 1.8 MeV proton irradiation damage can aid the modeling and design for a range of radiation tolerant devices.

     
    more » « less
  3. Quantitative, broadly applicable metrics of resilience are needed to effectively manage tidal marshes into the future. Here we quantified three metrics of temporal marsh resilience: time to marsh drowning, time to marsh tipping point, and the probability of a regime shift, defined as the conditional probability of a transition to an alternative super-optimal, suboptimal, or drowned state. We used organic matter content (loss on ignition, LOI) and peat age combined with the Coastal Wetland Equilibrium Model (CWEM) to track wetland development and resilience under different sea-level rise scenarios in the Sacramento-San Joaquin Delta (Delta) of California. A 100-year hindcast of the model showed excellent agreement ( R 2 = 0.96) between observed (2.86 mm/year) and predicted vertical accretion rates (2.98 mm/year) and correctly predicted a recovery in LOI ( R 2 = 0.76) after the California Gold Rush. Vertical accretion in the tidal freshwater marshes of the Delta is dominated by organic production. The large elevation range of the vegetation combined with high relative marsh elevation provides Delta marshes with resilience and elevation capital sufficiently great to tolerate centenary sea-level rise (CLSR) as high as 200 cm. The initial relative elevation of a marsh was a strong determinant of marsh survival time and tipping point. For a Delta marsh of average elevation, the tipping point at which vertical accretion no longer keeps up with the rate of sea-level rise is 50 years or more. Simulated, triennial additions of 6 mm of sediment via episodic atmospheric rivers increased the proportion of marshes surviving from 51% to 72% and decreased the proportion drowning from 49% to 28%. Our temporal metrics provide critical time frames for adaptively managing marshes, restoring marshes with the best chance of survival, and seizing opportunities for establishing migration corridors, which are all essential for safeguarding future habitats for sensitive species. 
    more » « less
  4. Radiation damage in electronic devices is known to be influenced by physics, design, and materials system. Here, we report the effects of biasing state (such as ON and OFF) and pre-existing damage in GaN high electron mobility transistors exposed to γ radiation. Controlled and accelerated DC biasing was used to prestress the devices, which showed significant degradation in device characteristics compared to pristine devices under ON and OFF states after γ irradiation. The experiment is performed in situ for the ON-state to investigate transient effects during irradiation until the total dose reaches 10 Mrad. It shows that threshold voltage, maximum transconductance, and leakage current initially decrease with dosage but slowly converge to a steady value at higher doses. After 10 Mrad irradiation, the OFF-state device demonstrates larger RON and one order of magnitude increased leakage current compared to the ON-state irradiated device. The micro-Raman study also confirms that the ON-state operation shows more radiation hardness than OFF and prestressed devices. Prestressed devices generate the highest threshold voltage shift from −2.85 to −2.49 V and two orders of magnitude higher leakage current with decreased saturation current after irradiation. These findings indicate that high electric fields during stressing can generate defects by modifying strain distribution, and higher defect density can not only create more charges during irradiation but also accelerate the diffusion process from the ionizing track to the nearest collector and consequently degrade device performances.

     
    more » « less
  5. null (Ed.)
    Two-dimensional transition metal dichalcogenides (2D-TMDs) hold a great potential to platform future flexible optoelectronics. The beating hearts of these materials are their excitons known as XA and XB, which arise from transitions between spin-orbit split (SOS) levels in the conduction and valence bands at the K-point. The functionality of 2D-TMD-based devices is determined by the dynamics of these excitons. One of the most consequential channels of exciton decay on the device functionality is the defect-assisted recombination (DAR). Here, we employ steady-state absorption and emission spectroscopies, and pump density-dependent femtosecond transient absorption spectroscopy to report on the effect of DAR on the lifetime of excitons in monolayers of tungsten disulfide (2D-WS2) and diselenide (2D-WSe2). These pump-probe measurements suggested that while exciton decay dynamics in both monolayers are driven by DAR, in 2D-WS2, defect states near the XB exciton fill up before those near the XA exciton. However, in the 2D-WSe2 monolayer, the defect states fill up similarly. Understanding the contribution of DAR on the lifetime of excitons and the partition of this decay channel between XA and XB excitons may open new horizons for the incorporation of 2D-TMD materials in future optoelectronics. 
    more » « less