skip to main content


Title: Set-valued state estimation of nonlinear discrete-time systems with nonlinear invariants based on constrained zonotopes
Award ID(s):
1949748
NSF-PAR ID:
10312918
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Automatica
Volume:
129
Issue:
C
ISSN:
0005-1098
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the present article, we follow up our recent work on the experimental assessment of two data-driven nonlinear system identification methodologies. The first methodology constructs a single nonlinear-mode model from periodic vibration data obtained under phase-controlled harmonic excitation. The second methodology constructs a state-space model with polynomial nonlinear terms from vibration data obtained under uncontrolled broadband random excitation. The conclusions drawn from our previous work (experimental) were limited by uncertainties inherent to the specimen, instrumentation, and signal processing. To avoid these uncertainties in the present work, we pursued a completely numerical approach based on synthetic measurement data obtained from simulated experiments. Three benchmarks are considered, which feature geometric, unilateral contact, and dry friction nonlinearity, respectively. As in our previous work, we assessed the prediction accuracy of the identified models with a focus on the regime near a particular resonance. This way, we confirmed our findings on the strengths and weaknesses of the two methodologies and derive several new findings: First, the state-space method struggles even for polynomial nonlinearities if the training data is chaotic. Second, the polynomial state-space models can reach high accuracy only in a rather limited range of vibration levels for systems with non-polynomial nonlinearities. Such cases demonstrate the sensitivity to training data inherent in the method, as model errors are inevitable here. Third, although the excitation does not perfectly isolate the nonlinear mode (exciter-structure interaction, uncontrolled higher harmonics, local instead of distributed excitation), the modal properties are identified with high accuracy. 
    more » « less
  2. As the dominant form of mesoscale variability in the equatorial eastern Pacific, Tropical Instability Waves (TIWs) are known to interact with the El Niño and Southern Oscillation (ENSO) in complex ways. TIWs activity is modulated by the ENSO state and also provide significant feedback on ENSO via nonlinear dynamic heating (NDH), acting as a source of asymmetry between the El Niño and La Niña phases. In this work, we show that the interannual variability of TIWs-induced heat flux and NDH can be approximately expressed in terms of the mean meridional temperature gradient as TIWs tend to transport heat downgradient of the temperature anomalies along the Sea Surface Temperature (SST) front. The TIWs-induced NDH can be quantified as an asymmetric negative feedback on ENSO by a nonlinear thermal eddy diffusivity which depends on the background TIWs pattern and the ENSO-related linear and nonlinear processes. This proposed parameterization scheme can capture well the direct ENSO modulation on TIWs activity, the combination effect arising from the nonlinear interaction between ENSO and the cold tongue annual cycle, and associated ENSO nonlinearity. This parameterization scheme is effectively tested using four ocean reanalysis datasets with different horizontal resolutions that exhibit contrasted patterns of TIWs activity. This scheme may be useful for assessing the TIWs-induced feedback on ENSO in mechanistic ENSO models to better understand the dynamics of ENSO complexity. 
    more » « less