skip to main content

Title: Cnidarian hair cell development illuminates an ancient role for the class IV POU transcription factor in defining mechanoreceptor identity
Although specialized mechanosensory cells are found across animal phylogeny, early evolutionary histories of mechanoreceptor development remain enigmatic. Cnidaria (e.g. sea anemones and jellyfishes) is the sister group to well-studied Bilateria (e.g. flies and vertebrates), and has two mechanosensory cell types - a lineage-specific sensory-effector known as the cnidocyte, and a classical mechanosensory neuron referred to as the hair cell. While developmental genetics of cnidocytes is increasingly understood, genes essential for cnidarian hair cell development are unknown. Here we show that the class IV POU homeodomain transcription factor (POU-IV) - an indispensable regulator of mechanosensory cell differentiation in Bilateria and cnidocyte differentiation in Cnidaria - controls hair cell development in the sea anemone cnidarian Nematostella vectensis. N. vectensis POU-IV is postmitotically expressed in tentacular hair cells, and is necessary for development of the apical mechanosensory apparatus, but not of neurites, in hair cells. Moreover, it binds to deeply conserved DNA recognition elements, and turns on a unique set of effector genes - including the transmembrane-receptor-encoding gene polycystin 1 - specifically in hair cells. Our results suggest that POU-IV directs differentiation of cnidarian hair cells and cnidocytes via distinct gene regulatory mechanisms, and support an evolutionarily ancient role for POU-IV in defining more » the mature state of mechanosensory neurons. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. The sea anemoneNematostella vectensis(Anthozoa, Cnidaria) is a powerful model for characterizing the evolution of genes functioning in venom and nervous systems. Although venom has evolved independently numerous times in animals, the evolutionary origin of many toxins remains unknown. In this work, we pinpoint an ancestral gene giving rise to a new toxin and functionally characterize both genes in the same species. Thus, we report a case of protein recruitment from the cnidarian nervous to venom system. The ShK-like1 peptide has a ShKT cysteine motif, is lethal for fish larvae and packaged into nematocysts, the cnidarian venom-producing stinging capsules. Thus, ShK-like1 is a toxic venom component. Its paralog, ShK-like2, is a neuropeptide localized to neurons and is involved in development. Both peptides exhibit similarities in their functional activities: They provoke contraction inNematostellapolyps and are toxic to fish. Because ShK-like2 but not ShK-like1 is conserved throughout sea anemone phylogeny, we conclude that the two paralogs originated due to aNematostella-specific duplication of a ShK-like2 ancestor, a neuropeptide-encoding gene, followed by diversification and partial functional specialization. ShK-like2 is represented by two gene isoforms controlled by alternative promoters conferring regulatory flexibility throughout development. Additionally, we characterized the expression patterns of four other peptides with structuralmore »similarities to studied venom components and revealed their unexpected neuronal localization. Thus, we employed genomics, transcriptomics, and functional approaches to reveal one venom component, five neuropeptides with two different cysteine motifs, and an evolutionary pathway from nervous to venom system in Cnidaria.

    « less
  2. The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution.
  3. Abstract Background

    Genome wide association (GWA) studies demonstrate linkages between genetic variants and traits of interest. Here, we tested associations between single nucleotide polymorphisms (SNPs) in rice (Oryza sativa) and two root hair traits, root hair length (RHL) and root hair density (RHD). Root hairs are outgrowths of single cells on the root epidermis that aid in nutrient and water acquisition and have also served as a model system to study cell differentiation and tip growth. Using lines from the Rice Diversity Panel-1, we explored the diversity of root hair length and density across four subpopulations of rice (aus,indica,temperate japonica, andtropical japonica). GWA analysis was completed using the high-density rice array (HDRA) and the rice reference panel (RICE-RP) SNP sets.


    We identified 18 genomic regions related to root hair traits, 14 of which related to RHD and four to RHL. No genomic regions were significantly associated with both traits. Two regions overlapped with previously identified quantitative trait loci (QTL) associated with root hair density in rice. We identified candidate genes in these regions and present those with previously published expression data relevant to root hair development. We re-phenotyped a subset of lines with extreme RHD phenotypes and found that the variationmore »in RHD was due to differences in cell differentiation, not cell size, indicating genes in an associated genomic region may influence root hair cell fate. The candidate genes that we identified showed little overlap with previously characterized genes in rice andArabidopsis.


    Root hair length and density are quantitative traits with complex and independent genetic control in rice. The genomic regions described here could be used as the basis for QTL development and further analysis of the genetic control of root hair length and density. We present a list of candidate genes involved in root hair formation and growth in rice, many of which have not been previously identified as having a relation to root hair growth. Since little is known about root hair growth in grasses, these provide a guide for further research and crop improvement.

    « less
  4. Administration of FVIII-Expressing Human Placental Cells to Juvenile Sheep Yields Multi-Organ Engraftment, Therapeutic Plasma FVIII Levels and Alter Immune Signaling Pathways to Evade FVIII Inhibitor Induction 63rd ASH Annual Meeting and Exposition, December 11-14, 2021, Georgia World Congress Center, Atlanta, GA Program: Oral and Poster Abstracts Session: 801. Gene Therapies: Poster III Hematology Disease Topics & Pathways: Bleeding and Clotting, Biological, Translational Research, Hemophilia, Genetic Disorders, Immune Mechanism, Diseases, Gene Therapy, Therapies, Adverse Events, Biological Processes, Transplantation Monday, December 13, 2021, 6:00 PM-8:00 PM We have previously reported that normal juvenile sheep that received weekly intravenous (IV) infusions of human (n=3) or an expression/secretion-optimized, bioengineered human/porcine hybrid (ET3) FVIII protein (n=3) for 5 weeks (20 IU/kg) developed anti-FVIII inhibitory antibodies (10-116 BU, and IgG titers of 1:20–1:245) by week 3 of infusion. By contrast, the IV infusion, or IP administration, of human placental mesenchymal cells (PLC) transduced with a lentiviral vector encoding a myeloid codon-optimized ET3 transgene (PLC-mcoET3) to produce high levels of ET3 protein (4.9-6IU/10^6 cells/24h) enabled the delivery of FVIII without eliciting antibodies, despite using PLC-mcoET3 doses that provided ~20-60 IU/kg ET3 each 24h to mirror the amount of FVIII protein infused. In addition, we showed that themore »route of PLC-mcoET3 administration (IP vs IV) did not impact the resultant plasma FVIII levels, with animals in these two groups exhibiting mean increases in FVIII activity (quantified by aPTT) of 30.9% and 34.2%, respectively, at week 15 post-treatment. Here, we investigated whether the sites and levels of PLC-mcoET3 engraftment were dependent upon the route of administration and performed s sheep-specific multiplexed transcriptomic analysis (NanoString) to define the immune signaling pathways that thwarted FVIII/ET3 protein immune response when ET3 was delivered through PLC. Tissue samples were collected from various organs at euthanasia and RT-qPCR performed using primers specific to the mcoET3 transgene, to the human housekeeping transcript GAPDH, and to sheep GAPDH, to quantify PLC-mcoET3 tissue engraftment, and normalize the results. RT-qPCR demonstrated PLC-mcoET3 engrafted, in both IP and IV groups, in all the organs evaluated (liver, lung, lymph nodes, thymus, and spleen). Animals that received PLC-mcoET3 via the IP route displayed higher overall levels of engraftment than their IV counterparts. The spleen was the preferential organ of engraftment for both IP and IV groups (IP:2.41±1.97%; IV: 0.64±0.54%). The IP group exhibited significantly higher engraftment in the left lobe of the liver (IP: 1.36±0.35%; IV: 0.041±0.022%), which was confirmed by immunohisto-chemistry (IHC) with an antibody to the human nuclear antigen Ku80 and ImageJ analysis (IP:5.24±3.36%; IV: 0±0). Of note is that the IP route resulted in higher levels of engraftment in the thymus, while IV infusion yielded higher levels of PLC-mcoET3 in lymph nodes. Analysis of H&E-stained tissues demonstrated they were devoid of any abnormal histologic changes and exhibited no evidence of hyperplasia or neoplasia, supporting the safety of the cell platform, irrespective of the route of administration. To date, NanoString analysis of PBMC collected at day 0, week 1, and week 5 post-infusion demonstrated that animals who received FVIII protein had upregulation of UBA5 and BATF, genes involved in antigen processing and Th17 signaling pathways, respectively. Although both IV and IP recipients of PLC-mcoET3 also had an increase in BATF, the IV group exhibited upregulation of BTLA, a gene involved in immune-tolerance, and downregulation of NOTCH and DDL1, involved in T cell differentiation, as well as MAPK12 and PLCG1, genes involved in proinflammatory cytokine regulation and T signaling within the Th17 signature. In IP recipients, BTLA, NOTCH, and DLL1 were all downregulated. Since ET3-reactive Th1 cells were not present in any of the treated animals, it is possible that the Th17 cells are responsible for the inhibitory antibodies seen in the juvenile sheep treated with FVIII/ET3 protein, while in animals receiving PLC-mcoET3, downregulation of genes involved in T cell differentiation and proinflammatory cytokine signaling keeps the immune system in check to avoid an immune response. Disclosures: Doering: Expression Therapeutics: Divested equity in a private or publicly-traded company in the past 24 months. Spencer: Expression Therapeutics: Divested equity in a private or publicly-traded company in the past 24 months.« less
  5. Besides the central role of classical Major Histocompatibility Complex (MHC) class Ia-restricted conventional Cluster of Differentiation 8 (CD8) T cells in antiviral host immune response, the amphibian Xenopus laevis critically rely on MHC class I-like (mhc1b10.1.L or XNC10)-restricted innate-like (i)T cells (iVα6 T cells) to control infection by the ranavirus Frog virus 3 (FV3). To complement and extend our previous reverse genetic studies showing that iVα6 T cells are required for tadpole survival, as well as for timely and effective adult viral clearance, we examined the conditions and kinetics of iVα6 T cell response against FV3. Using a FV3 knock-out (KO) growth-defective mutant, we found that upregulation of the XNC10 restricting class I-like gene and the rapid recruitment of iVα6 T cells depend on detectable viral replication and productive FV3 infection. In addition, by in vivo depletion with XNC10 tetramers, we demonstrated the direct antiviral effector function of iVα6 T cells. Notably, the transitory iV6 T cell defect delayed innate interferon and cytokine gene response, resulting in long-lasting negative inability to control FV3 infection. These findings suggest that in Xenopus and likely other amphibians, an immune surveillance system based on the early activation of iT cells by non-polymorphic MHC class-Imore »like molecules is important for efficient antiviral immune response.« less