skip to main content


Title: Multisensory integration by polymodal sensory neurons dictates larval settlement in a brainless cnidarian larva
Abstract

Multisensory integration (MSI) combines information from more than one sensory modality to elicit behaviours distinct from unisensory behaviours. MSI is best understood in animals with complex brains and specialized centres for parsing different modes of sensory information, but dispersive larvae of sessile marine invertebrates utilize multimodal environmental sensory stimuli to base irreversible settlement decisions on, and most lack complex brains. Here, we examined the sensory determinants of settlement in actinula larvae of the hydrozoanEctopleura crocea(Cnidaria), which possess a diffuse nerve net. A factorial settlement study revealed that photo‐, chemo‐ and mechanosensory cues each influenced the settlement response in a complex and hierarchical manner that was dependent on specific combinations of cues, an indication of MSI. Additionally, sensory gene expression over development peaked with developmental competence to settle, which in actinulae, requires cnidocyte discharge. Transcriptome analyses also highlighted several deep homological links between cnidarian and bilaterian mechano‐, chemo‐, and photosensory pathways. Fluorescent in situ hybridization studies of candidate transcripts suggested cellular partitioning of sensory function among the few cell types that comprise the actinula nervous system, where ubiquitous polymodal sensory neurons expressing putative chemo‐ and photosensitivity interface with mechanoreceptive cnidocytes. We propose a simple multisensory processing circuit, involving polymodal chemo/photosensory neurons and mechanoreceptive cnidocytes, that is sufficient to explain MSI in actinulae settlement. Our study demonstrates that MSI is not exclusive to complex brains, but likely predated and contextualized their evolution.

 
more » « less
Award ID(s):
1755337
NSF-PAR ID:
10420706
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
32
Issue:
14
ISSN:
0962-1083
Page Range / eLocation ID:
p. 3892-3907
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION A brainwide, synaptic-resolution connectivity map—a connectome—is essential for understanding how the brain generates behavior. However because of technological constraints imaging entire brains with electron microscopy (EM) and reconstructing circuits from such datasets has been challenging. To date, complete connectomes have been mapped for only three organisms, each with several hundred brain neurons: the nematode C. elegans , the larva of the sea squirt Ciona intestinalis , and of the marine annelid Platynereis dumerilii . Synapse-resolution circuit diagrams of larger brains, such as insects, fish, and mammals, have been approached by considering select subregions in isolation. However, neural computations span spatially dispersed but interconnected brain regions, and understanding any one computation requires the complete brain connectome with all its inputs and outputs. RATIONALE We therefore generated a connectome of an entire brain of a small insect, the larva of the fruit fly, Drosophila melanogaster. This animal displays a rich behavioral repertoire, including learning, value computation, and action selection, and shares homologous brain structures with adult Drosophila and larger insects. Powerful genetic tools are available for selective manipulation or recording of individual neuron types. In this tractable model system, hypotheses about the functional roles of specific neurons and circuit motifs revealed by the connectome can therefore be readily tested. RESULTS The complete synaptic-resolution connectome of the Drosophila larval brain comprises 3016 neurons and 548,000 synapses. We performed a detailed analysis of the brain circuit architecture, including connection and neuron types, network hubs, and circuit motifs. Most of the brain’s in-out hubs (73%) were postsynaptic to the learning center or presynaptic to the dopaminergic neurons that drive learning. We used graph spectral embedding to hierarchically cluster neurons based on synaptic connectivity into 93 neuron types, which were internally consistent based on other features, such as morphology and function. We developed an algorithm to track brainwide signal propagation across polysynaptic pathways and analyzed feedforward (from sensory to output) and feedback pathways, multisensory integration, and cross-hemisphere interactions. We found extensive multisensory integration throughout the brain and multiple interconnected pathways of varying depths from sensory neurons to output neurons forming a distributed processing network. The brain had a highly recurrent architecture, with 41% of neurons receiving long-range recurrent input. However, recurrence was not evenly distributed and was especially high in areas implicated in learning and action selection. Dopaminergic neurons that drive learning are amongst the most recurrent neurons in the brain. Many contralateral neurons, which projected across brain hemispheres, were in-out hubs and synapsed onto each other, facilitating extensive interhemispheric communication. We also analyzed interactions between the brain and nerve cord. We found that descending neurons targeted a small fraction of premotor elements that could play important roles in switching between locomotor states. A subset of descending neurons targeted low-order post-sensory interneurons likely modulating sensory processing. CONCLUSION The complete brain connectome of the Drosophila larva will be a lasting reference study, providing a basis for a multitude of theoretical and experimental studies of brain function. The approach and computational tools generated in this study will facilitate the analysis of future connectomes. Although the details of brain organization differ across the animal kingdom, many circuit architectures are conserved. As more brain connectomes of other organisms are mapped in the future, comparisons between them will reveal both common and therefore potentially optimal circuit architectures, as well as the idiosyncratic ones that underlie behavioral differences between organisms. Some of the architectural features observed in the Drosophila larval brain, including multilayer shortcuts and prominent nested recurrent loops, are found in state-of-the-art artificial neural networks, where they can compensate for a lack of network depth and support arbitrary, task-dependent computations. Such features could therefore increase the brain’s computational capacity, overcoming physiological constraints on the number of neurons. Future analysis of similarities and differences between brains and artificial neural networks may help in understanding brain computational principles and perhaps inspire new machine learning architectures. The connectome of the Drosophila larval brain. The morphologies of all brain neurons, reconstructed from a synapse-resolution EM volume, and the synaptic connectivity matrix of an entire brain. This connectivity information was used to hierarchically cluster all brains into 93 cell types, which were internally consistent based on morphology and known function. 
    more » « less
  2. Abstract

    Unisensory cues are often insufficient for animals to effectively engage in foraging, mating, and predatory activities. In contrast, integration of cues collected from multiple sensory organs enhances the overall perceptual experience and thereby facilitates better decision‐making. Despite the importance of multisensory integration in animals, the field of artificial intelligence (AI) and neuromorphic computing has primarily focused on processing unisensory information. This lack of emphasis on multisensory integration can be attributed to the absence of a miniaturized hardware platform capable of co‐locating multiple sensing modalities and enabling in‐sensor and near‐sensor processing. In this study, this limitation is addressed by utilizing the chemo‐sensing properties of graphene and the photo‐sensing capability of monolayer molybdenum disulfide (MoS2) to create a multisensory platform for visuochemical integration. Additionally, the in‐memory‐compute capability of MoS2memtransistors is leveraged to develop neural circuits that facilitate multisensory decision‐making. The visuochemical integration platform is inspired by intricate courtship of Heliconius butterflies, where female species rely on the integration of visual cues (such as wing color) and chemical cues (such as pheromones) generated by the male butterflies for mate selection. The butterfly‐inspired visuochemical integration platform has significant implications in both robotics and the advancement of neuromorphic computing, going beyond unisensory intelligence and information processing.

     
    more » « less
  3. Our brain perceives the world by exploiting multisensory cues to extract information about various aspects of external stimuli. The sensory cues from the same stimulus should be integrated to improve perception, and otherwise segregated to distinguish different stimuli. In reality, however, the brain faces the challenge of recognizing stimuli without knowing in advance the sources of sensory cues. To address this challenge, we propose that the brain conducts integration and segregation concurrently with complementary neurons. Studying the inference of heading-direction via visual and vestibular cues, we develop a network model with two reciprocally connected modules modeling interacting visual-vestibular areas. In each module, there are two groups of neurons whose tunings under each sensory cue are either congruent or opposite. We show that congruent neurons implement integration, while opposite neurons compute cue disparity information for segregation, and the interplay between two groups of neurons achieves efficient multisensory information processing. 
    more » « less
  4. The central nervous system (CNS) is specialised in processing information originating from a variety of internal and external sources. Its basic information processing units are nerve cells or neu- rons. Within the CNS, these elementary building blocks are densely interconnected in hierarchical and parallel pathways. Information originating from sensory neurons in contact with the body periphery is gradually transformed along these pathways to generate specific actions through signals relayed by motor neurons to peripheral organs. Information processing in the CNS exhibits an astonishing degree of diversity when con- sidering the morphology of its neurons, their connectivity patterns, their electrical and their biochemical signalling properties. Thus, the infor- mation processing capabilities of animal brains are quite distinct from those of existing man-made machines, being characterised by their resilience to noise, their capacity to rapidly adapt, learn and generalise, as well as their ability to participate in complex social behaviours. 
    more » « less
  5. Mosquitoes can change their feeding behaviours based on past experiences, such as shifting from biting animals to biting humans or avoiding defensive hosts (Wolff & Riffell 2018J. Exp. Biol.221, jeb157131. (doi:10.1242/jeb.157131)). Dopamine is a critical neuromodulator for insects, allowing flexibility in their feeding preferences, but its role in the primary olfactory centre, the antennal lobe (AL), remains unclear (Vinaugeret al.2018Curr. Biol.28, 333–344.e8. (doi:10.1016/j.cub.2017.12.015)). It is also unknown whether mosquitoes can learn some odours and not others, or whether different species learn the same odour cues. We assayed aversive olfactory learning in four mosquito species with different host preferences, and found that they differentially learn odours salient to their preferred host. Mosquitoes that prefer humans learned odours found in mammalian skin, but not a flower odour, and a nectar-feeding species only learned a floral odour. Comparing the brains of these four species revealed significantly different innervation patterns in the AL by dopaminergic neurons. Calcium imaging in theAedes aegyptiAL and three-dimensional image analyses of dopaminergic innervation show that glomeruli tuned to learnable odours have significantly higher dopaminergic innervation. Changes in dopamine expression in the insect AL may be an evolutionary mechanism to adapt olfactory learning circuitry without changing brain structure and confer to mosquitoes an ability to adapt to new hosts.

     
    more » « less