skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Discrete Time Optimal Trajectory Generation and Transversality Condition with Free Final Time
A discrete time, optimal trajectory planning scheme for position trajectory generation of a vehicle is given here, considering the mission duration as a free variable. The vehicle is actuated in three rotational degrees of freedom and one translational degree of freedom. This model is applicable to vehicles that have a body-fixed thrust vector direction for translational motion control, including fixed-wing and rotorcraft unmanned aerial vehicles (UAVs), unmanned underwater vehicles (UUVs) and spacecraft. The lightweight scheme proposed here generates the trajectory in inertial coordinates, and is intended for real time, on-the-go applications. The unspecified terminal time can be considered as an additional design parameter. This is done by deriving the optimality conditions in a discrete time setting, which results in the discrete transversality condition. The trajectory starts from an initial position and reaches a desired final position in an unspecified final time that ensures the cost on state and control is optimized. The trajectory generated by this scheme can be considered as the desired trajectory for a tracking control scheme. Numerical simulation results validate the performance of this trajectory generation scheme used in conjunction with a nonlinear tracking control scheme.  more » « less
Award ID(s):
1739748
PAR ID:
10313004
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 International Conference on Unmanned Aircraft Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a finite-time stable (FTS) position tracking control scheme in discrete time for an unmanned vehicle. The control scheme guarantees discrete-time stability of the feedback system in finite time. This scheme is developed in discrete time as it is more convenient for onboard computer implementation and guarantees stability irrespective of sampling period. Finite-time stability analysis of the discrete-time tracking control is carried out using discrete Lyapunov analysis. This tracking control scheme ensures stable convergence of position tracking errors to the desired trajectory in finite time. The advantages of finite-time stabilization in discrete time over finite-time stabilization of a sampled continuous tracking control system is addressed in this paper by a numerical comparison. This comparison is performed using numerical simulations on continuous and discrete FTS tracking control schemes applied to an unmanned vehicle model. 
    more » « less
  2. This paper addresses the problem of generating a continuous and differentiable trajectory on the Lie group of rigid body motions, SE(3), for a class of underactuated vehicles modeled as rigid bodies. The three rotational degrees of freedom (DOF) are independently actuated, while only one translational DOF is actuated by a body-fixed thrust vector. This model is applicable to a large set of unmanned vehicles, including fixed-wing and rotorcraft unmanned aerial vehicles (UAVs). The formulation utilizes exponential coordinates to express the underactuation constraint as an intrinsic part of the problem. It provides steps to generate a rest-to-rest trajectory after obtaining conditions that guarantee controllability. An attitude trajectory is selected to satisfy the given initial and final attitude state. The position trajectory generation is subsequently posed as an optimal control problem expressed as a linear quadratic regulator (LQR) in the exponential coordinates corresponding to position. As a result, an optimal position trajectory is obtained which ensures that the trajectory generated is feasible with realistic velocities and with given initial pose and final pose, while satisfying the underactuation constraint. Numerical simulation results are obtained that validate this trajectory generation scheme. 
    more » « less
  3. This paper presents a finite-time stable (FTS) attitude tracking control scheme in discrete time for an unmanned vehicle. The attitude tracking control scheme guarantees discrete-time stability of the feedback system in finite time. This scheme is developed in discrete time as it is more convenient for onboard computer implementation and guarantees stability irrespective of sampling period. Finite-time stability analysis of the discrete-time tracking control is carried out using discrete Lyapunov analysis. This tracking control scheme ensures stable convergence of attitude tracking errors to the desired trajectory in finite time. The advantages of finite-time stabilization in discrete time over finite-time stabilization of a sampled continuous time tracking control system is addressed in this paper through a numerical comparison. This comparison is performed using numerical simulations on continuous and discrete FTS tracking control schemes applied to an unmanned vehicle model. 
    more » « less
  4. Continuous trajectory control of fixed-wing unmanned aerial vehicles (UAVs) is complicated when considering hidden dynamics. Due to UAV multi degrees of freedom, tracking methodologies based on conventional control theory, such as Proportional-Integral-Derivative (PID) has limitations in response time and adjustment robustness, while a model based approach that calculates the force and torques based on UAV’s current status is complicated and rigid.We present an actor-critic reinforcement learning framework that controls UAV trajectory through a set of desired waypoints. A deep neural network is constructed to learn the optimal tracking policy and reinforcement learning is developed to optimize the resulting tracking scheme. The experimental results show that our proposed approach can achieve 58.14% less position error, 21.77% less system power consumption and 9:23% faster attainment than the baseline. The actor network consists of only linear operations, hence Field Programmable Gate Arrays (FPGA) based hardware acceleration can easily be designed for energy efficient real-time control. 
    more » « less
  5. Autonomous vehicle trajectory tracking control is challenged by situations of varying road surface friction, especially in the scenario where there is a sudden decrease in friction in an area with high road curvature. If the situation is unknown to the control law, vehicles with high speed are more likely to lose tracking performance and/or stability, resulting in loss of control or the vehicle departing the lane unexpectedly. However, with connectivity either to other vehicles, infrastructure, or cloud services, vehicles may have access to upcoming roadway information, particularly the friction and curvature in the road path ahead. This paper introduces a model-based predictive trajectory-tracking control structure using the previewed knowledge of path curvature and road friction. In the structure, path following and vehicle stabilization are incorporated through a model predictive controller. Meanwhile, long-range vehicle speed planning and tracking control are integrated to ensure the vehicle can slow down appropriately before encountering hazardous road conditions. This approach has two major advantages. First, the prior knowledge of the desired path is explicitly incorporated into the computation of control inputs. Second, the combined transmission of longitudinal and lateral tire forces is considered in the controller to avoid violation of tire force limits while keeping performance and stability guarantees. The efficacy of the algorithm is demonstrated through an application case where a vehicle navigates a sharply curving road with varying friction conditions, with results showing that the controller can drive a vehicle up to the handling limits and track the desired trajectory accurately. 
    more » « less