Programming languages are essential tools for developers, and their evolution plays a crucial role in supporting the activities of developers. One instance of programming language evolution is the introduction of syntactic sugars, which are additional syntax elements that provide alternative, more readable code constructs. However, the process of designing and evolving a programming language has traditionally been guided by anecdotal experiences and intuition. Recent advances in tools and methodologies for mining open-source repositories have enabled developers to make data-driven software engineering decisions. In light of this, this paper proposes an approach for motivating data-driven programming evolution by applying frequent subgraph mining techniques to a large dataset of 166,827,154 open-source Java methods. The dataset is mined by generalizing Java control-flow graphs to capture broad programming language usages and instances of duplication. Frequent subgraphs are then extracted to identify potentially impactful opportunities for new syntactic sugars. Our diverse results demonstrate the benefits of the proposed technique by identifying new syntactic sugars involving a variety of programming constructs that could be implemented in Java, thus simplifying frequent code idioms. This approach can potentially provide valuable insights for Java language designers, and serve as a proof-of-concept for data-driven programming language design and evolution.
more »
« less
On the Naming of Methods: A Survey of Professional Developers
This paper describes the results of a large (+ 1100 responses) survey of professional software developers concerning standards for naming source code methods. The various standards for source code method names are derived from and supported in the software engineering literature. The goal of the survey is to determine if there is a general consensus among developers that the standards are accepted and used in practice. Additionally, the paper examines factors such as years of experience and programming language knowledge in the context of survey responses. The survey results show that participants very much agree about the importance of various standards and how they apply to names and that years of experience and the programming language has almost no effect on their responses. The results imply that the given standards are both valid and to a large degree complete. The work provides a foundation for automated method name assessment during development and code reviews.
more »
« less
- Award ID(s):
- 1850412
- PAR ID:
- 10313008
- Date Published:
- Journal Name:
- 43rd International Conference on Software Engineering
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Software developers create and share code online to demonstrate programming language concepts and programming tasks. Code snippets can be a useful way to explain and demonstrate a programming concept, but may not always be directly executable. A code snippet can contain parse errors, or fail to execute if the environment contains unmet dependencies. This paper presents an empirical analysis of the executable status of Python code snippets shared through the GitHub gist system, and the ability of developers familiar with software configuration to correctly configure and run them. We find that 75.6% of gists require non-trivial configuration to overcome missing dependencies, configuration files, reliance on a specific operating system, or some other environment configuration. Our study also suggests the natural assumption developers make about resource names when resolving configuration errors is correct less than half the time. We also present Gistable, a database and extensible framework built on GitHub's gist system, which provides executable code snippets to enable reproducible studies in software engineering. Gistable contains 10,259 code snippets, approximately 5,000 with a Dockerfile to configure and execute them without import error. Gistable is publicly available at https://github.com/gistable/gistable.more » « less
-
null (Ed.)Open Source Software (OSS) projects start with an initial vocabulary, often determined by the first generation of developers. This vocabulary, embedded in code identifier names and internal code comments, goes through multiple rounds of change, influenced by the interrelated patterns of human (e.g., developers joining and departing) and system (e.g., maintenance activities) interactions. Capturing the dynamics of this change is crucial for understanding and synthesizing code changes over time. However, existing code evolution analysis tools, available in modern version control systems such as GitHub and SourceForge, often overlook the linguistic aspects of code evolution. To bridge this gap, in this paper, we propose to study code evolution in OSS projects through the lens of developers' language, also known as code lexicon. Our analysis is conducted using 32 OSS projects sampled from a broad range of application domains. Our results show that different maintenance activities impact code lexicon differently. These insights lay out a preliminary foundation for modeling the linguistic history of OSS projects. In the long run, this foundation will be utilized to provide support for basic program comprehension tasks and help researchers gain new insights into the complex interplay between linguistic change and various system and human aspects of OSS development.more » « less
-
Despite the best efforts of the security community, security vulnerabilities in software are still prevalent, with new vulnerabilities reported daily and older ones stubbornly repeating themselves. One potential source of these vulnerabilities is shortcomings in the used language and library APIs. Developers tend to trust APIs, but can misunderstand or misuse them, introducing vulnerabilities. We call the causes of such misuse blindspots. In this paper, we study API blindspots from the developers' perspective to: (1) determine the extent to which developers can detect API blindspots in code and (2) examine the extent to which developer characteristics (i.e., perception of code correctness, familiarity with code, confidence, professional experience, cognitive function, and personality) affect this capability. We conducted a study with 109 developers from four countries solving programming puzzles that involve Java APIs known to contain blindspots. We find that (1) The presence of blindspots correlated negatively with the developers' accuracy in answering implicit security questions and the developers' ability to identify potential security concerns in the code. This effect was more pronounced for I/O-related APIs and for puzzles with higher cyclomatic complexity. (2) Higher cognitive functioning and more programming experience did not predict better ability to detect API blindspots. (3) Developers exhibiting greater openness as a personality trait were more likely to detect API blindspots. This study has the potential to advance API security in (1) design, implementation, and testing of new APIs; (2) addressing blindspots in legacy APIs; (3) development of novel methods for developer recruitment and training based on cognitive and personality assessments; and (4) improvement of software development processes (e.g., establishment of security and functionality teams).more » « less
-
null (Ed.)Polyglot programming, the use of multiple programming languages during the development process, is common practice in modern software development. This study investigates this practice through a randomized controlled trial conducted under the context of database programming. Participants in the study were given coding tasks written in Java and one of three SQL-like embedded languages. One was plain SQL in strings, one was in Java only, and the third was a hybrid embedded language that was closer to the host language. We recorded 109 valid data points. Results showed significant differences in how developers of different experience levels code using polyglot techniques. Notably, less experienced programmers wrote correct programs faster in the hybrid condition (frequent, but less severe, switches), while more experienced developers that already knew both languages performed better in traditional SQL (less frequent, but more complete, switches). The results indicate that the productivity impact of polyglot programming is complex and experience level dependent.more » « less
An official website of the United States government

